Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Вопрос 16. Метод максимального правдоподобия.

Поиск

 

Основные свойства статистических характеристик параметров распределения: несме-щенность, состоятельность, эффективность. Несмещенность и состоятельность выборочного среднего как оценки математического ожидания. Смещенность выборочной дисперсии. Пример несмещенной оценки дисперсии. Асимптотически несмещенные оценки. Способы построения оценок: метод наибольшего правдоподобия, метод момен-тов, метод квантили, метод наименьших квадратов, байесовский подход к получению оценок.

Получив статистические оценки параметров распределения (выборочное среднее, выбороч-ную дисперсию и т.д.), нужно убедиться, что они в достаточной степени служат приближе-нием соответствующих характеристик генеральной совокупности. Определим требования, которые должны при этом выполняться.

 

Пусть Θ* - статистическая оценка неизвестного параметра Θ теоретического распределения. Извлечем из генеральной совокупности несколько выборок одного и того же объема п и вычислим для каждой из них оценку параметра Θ: Тогда оценку Θ* можно рассматривать как случайную величину, принимающую возможные значения Если математическое ожидание Θ* не равно оцениваемому параметру, мы будем получать при вычислении оценок систематические ошибки одного знака (с избытком, если М(Θ*) >Θ, и с недостатком, если М(Θ*) < Θ). Следовательно, необходимым условием отсутствия систе-матических ошибок является требование М(Θ*) = Θ.

Определение 16.2. Статистическая оценка Θ* называется несмещенной, если ее математичес-кое ожидание равно оцениваемому параметру Θ при любом объеме выборки:

М(Θ*) = Θ. (16.1)

Смещенной называют оценку, математическое ожидание которой не равно оцениваемому параметру.

Однако несмещенность не является достаточным условием хорошего приближения к истин-ному значению оцениваемого параметра. Если при этом возможные значения Θ* могут значительно отклоняться от среднего значения, то есть дисперсия Θ* велика, то значение, найденное по данным одной выборки, может значительно отличаться от оцениваемого параметра. Следовательно, требуется наложить ограничения на дисперсию.

Определение 16.2. Статистическая оценка называется эффективной, если она при заданном объеме выборки п имеет наименьшую возможную дисперсию.

При рассмотрении выборок большого объема к статистическим оценкам предъявляется еще и требование состоятельности.

Определение 16.3. Состоятельной называется статистическая оценка, которая при п→∞ стре-мится по вероятности к оцениваемому параметру (если эта оценка несмещенная, то она будет состоятельной, если при п→∞ ее дисперсия стремится к 0).

Убедимся, что представляет собой несмещенную оценку математического ожидания М(Х).

Будем рассматривать как случайную величину, а х1, х2,…, хп, то есть значения исследуемой случайной величины, составляющие выборку, – как независимые, одинаково распределенные случайные величины Х1, Х2,…, Хп, имеющие математическое ожидание а. Из свойств математического ожидания следует, что

 

Но, поскольку каждая из величин Х1, Х2,…, Хп имеет такое же распределение, что и генеральная совокупность, а = М(Х), то есть М() = М(Х), что и требовалось доказать.

Выборочное среднее является не только несмещенной, но и состоятельной оценкой математического ожидания. Если предположить, что Х1, Х2,…, Хп имеют ограниченные дисперсии, то из теоремы Чебышева следует, что их среднее арифметическое, то есть, при увеличении п стремится по вероятности к математическому ожиданию а каждой их величин, то есть к М(Х). Следовательно, выборочное среднее есть состоятельная оценка математического ожидания.

В отличие от выборочного среднего, выборочная дисперсия является смещенной оценкой дисперсии генеральной совокупности. Можно доказать, что

, (16.2)

где DГ – истинное значение дисперсии генеральной совокупности. Можно предложить другую оценку дисперсии – исправленную дисперсию s², вычисляемую по формуле

. (16.3)

Такая оценка будет являться несмещенной. Ей соответствует исправленное среднее квадратическое отклонение

. (16.4)

Определение 16.4. Оценка некоторого признака называется асимптотически несмещенной, если для выборки х1, х2, …, хп

, (16.5)

где Х – истинное значение исследуемой величины.

 

Способы построения оценок.

Метод наибольшего правдоподобия.

Пусть Х – дискретная случайная величина, которая в результате п испытаний приняла значения х1, х2, …, хп. Предположим, что нам известен закон распределения этой величины, определяемый параметром Θ, но неизвестно численное значение этого параметра. Найдем его точечную оценку.

Пусть р(хi, Θ) – вероятность того, что в результате испытания величина Х примет значение хi. Назовем функцией правдоподобия дискретной случайной величины Х функцию аргумента Θ, определяемую по формуле:

L(х1, х2, …, хп; Θ) = p(x1,Θ)p(x2,Θ)…p(xn,Θ).

Тогда в качестве точечной оценки параметра Θ принимают такое его значение Θ* = Θ(х1, х2, …, хп), при котором функция правдоподобия достигает максимума. Оценку Θ* называют оценкой наибольшего правдоподобия.

Поскольку функции L и lnL достигают максимума при одном и том же значении Θ, удобнее искать максимум ln L – логарифмической функции правдоподобия. Для этого нужно:

1) найти производную;

2) приравнять ее нулю (получим так называемое уравнение правдоподобия) и найти критическую точку;

3) найти вторую производную; если она отрицательна в критической точке, то это – точка максимума.

Достоинства метода наибольшего правдоподобия: полученные оценки состоятельны (хотя могут быть смещенными), распределены асимптотически нормально при больших значениях п и имеют наименьшую дисперсию по сравнению с другими асимптотически нормальными оценками; если для оцениваемого параметра Θ существует эффективная оценка Θ*, то уравнение правдоподобия имеет единственное решение Θ*; метод наиболее полно использует данные выборки и поэтому особенно полезен в случае малых выборок.

Недостаток метода наибольшего правдоподобия: сложность вычислений.

Для непрерывной случайной величины с известным видом плотности распределения f(x) и неизвестным параметром Θ функция правдоподобия имеет вид:

L(х1, х2, …, хп; Θ) = f(x1,Θ)f(x2,Θ)…f(xn,Θ).

Оценка наибольшего правдоподобия неизвестного параметра проводится так же, как для дискретной случайной величины.

 

Метод моментов.

Метод моментов основан на том, что начальные и центральные эмпирические моменты являются состоятельными оценками соответственно начальных и центральных теоретических моментов, поэтому можно приравнять теоретические моменты соответствующим эмпирическим моментам того же порядка.

Если задан вид плотности распределения f(x, Θ), определяемой одним неизвестным параметром Θ, то для оценки этого параметра достаточно иметь одно уравнение. Например, можно приравнять начальные моменты первого порядка:

,

получив тем самым уравнение для определения Θ. Его решение Θ* будет точечной оценкой параметра, которая является функцией от выборочного среднего и, следовательно, и от вариант выборки:

Θ = ψ (х1, х2, …, хп).

Если известный вид плотности распределения f(x, Θ1, Θ2) определяется двумя неизвестными параметрами Θ1 и Θ2, то требуется составить два уравнения, например

ν1 = М1, μ2 = т2.

Отсюда - система двух уравнений с двумя неизвестными Θ1 и Θ2. Ее решениями будут точечные оценки Θ1* и Θ2* - функции вариант выборки:

Θ1 = ψ1 (х1, х2, …, хп),

Θ2 = ψ2(х1, х2, …, хп).

 

Метод наименьших квадратов.

Если требуется оценить зависимость величин у и х, причем известен вид связывающей их функции, но неизвестны значения входящих в нее коэффициентов, их величины можно оценить по имеющейся выборке с помощью метода наименьших квадратов. Для этого функция у = φ (х) выбирается так, чтобы сумма квадратов отклонений наблюдаемых значений у1, у2,…, уп от φ(хi) была минимальной:

 

При этом требуется найти стационарную точку функции φ(x; a, b, c…), то есть решить систему:

 

(решение, конечно, возможно только в случае, когда известен конкретный вид функции φ).

Рассмотрим в качестве примера подбор параметров линейной функции методом наименьших квадратов.

Для того, чтобы оценить параметры а и b в функции y = ax + b, найдем Тогда. Отсюда. Разделив оба полученных уравнения на п и вспомнив определения эмпирических моментов, можно получить выражения для а и b в виде:

. Следовательно, связь между х и у можно задать в виде:

 

 



Поделиться:


Последнее изменение этой страницы: 2016-04-25; просмотров: 542; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.164.100 (0.007 с.)