Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Функции моносахаридов и олигосахаридов в пищевых продуктах

Поиск

Гидрофильность

Гидрофильность – одно из основных физических свойств углеводов, полезных для пищевых продуктов. Гидрофильность обусловлена наличием многочисленных ОН-групп. Они взаимодействуют с молекулой воды посредством водородной связи, приводя таким образом к сольватации и (или) к растворению сахаров и многих их полимеров. Эффект связывания воды в значительной степени зависит от структуры сахара.

Таблица 3.11. Абсорбция воды сахарами [Fennema, 1985]

Сахара Абсорбция воды (20°С), %, при относительной равновесной влажности и времени
60%, 1 ч 60%, 9 дней 100%, 25 дней
Глюкоза 0,07 0,07 14,5
Фруктоза 0,28 0,63 73,4
Сахароза 0,04 0,03 18,4
Мальтоза-ангидро 0,80 7,0 18,4
Мальтоза-гидрат 5,05 5,1
Лактоза-ангидро 0,54 1,2 1,4
Лактоза-гидрат 5,05 5,1

Так, данные табл. 3.11 иллюстрируют, что, например, фруктоза значительно более гигроскопична, чем D-глюкоза, хотя они имеют и одинаковое число гидроксильных групп. При 100%-й равновесной относительной влажности воздуха сахароза и мальтоза связывают одинаковое количество воды, в то же время лактоза гораздо менее гигроскопична. Гидратные формы, имеющие прочную кристаллическую структуру, в меньшей степени способны абсорбировать влагу.

Следует отметить, что неочищенные сахара или сахарные сиропы в большей степени способны абсорбировать воду, чем очищенные сахара. Причина этого заключается в том, что примеси препятствуют образованию водородных связей между молекулами сахара и ОН-группы сахаров становятся более доступными для связывания воды посредством водородных связей. Способность связывать воду и контролировать активность воды (aw) в пищевых продуктах – одно из наиболее важных свойств углеводов (см. гл. 10).

Благодаря этому свойству можно (в зависимости от вида продукта) решать вопрос – надо ли лимитировать поступление влаги или контролировать ее потерю. Например, замороженные пекарские изделия не должны содержать больших количеств абсорбированной влаги, поэтому в этих изделиях более целесообразно использовать такие сахара, как мальтоза, лактоза. В других случаях необходим контроль aw, чтобы не происходила потеря влаги при хранении. Это относится к кондитерским и пекарским продуктам. Здесь хорошие результаты дает применение гигроскопичных сахаров, зерновых сиропов, фруктозных сиропов, инвертного сахара.

164:: 165:: Содержание

165:: 166:: Содержание

Связывание ароматических веществ

Для многих пищевых продуктов, при получении которых используются разные виды сушки, углеводы являются важным компонентом,

способствующим сохранению цвета и летучих ароматических веществ. Сущность этого заключается в замене взаимодействия сахар–вода на взаимодействие сахар–ароматическое вещество:

Сахар–вода + ароматическое в-во → сахар–ароматическое в-во + вода

Летучие ароматические вещества – это многочисленная группа карбонильных соединений (альдегиды, кетоны), производные карбоновых кислот (эфиры) и др.

Способность к связыванию ароматических веществ у дисахаридов выражена в большей степени, чем у моносахаридов. Очень хорошими фиксаторами аромата являются циклодекстрины (декстрины Шардингера (см. рис. 3.30)), которые образуются при действии на крахмал амилазы Bacillus macerans.


Рис. 3.30. Декстрины Шардингера

Эффективными фиксаторами аромата и красящих веществ являются большие углеводные молекулы, например, гуммиарабик. Образуя пленку вокруг этих веществ, он препятствует абсорбции влаги и потере ее за счет испарения и химического окисления. Большим прогрессом в фиксации пищевых ароматов является использование в технике микрокапсулирования смесей гуммиарабика и желатина.

165:: 166:: Содержание

166:: 167:: Содержание

Образование продуктов неферментативного потемнения и пищевого аромата

Как уже отмечалось, реакции неферментативного потемнения дают окрашенные меланоидиновые пигменты и много разнообразных летучих

компонентов. Именно они ответственны за тот или иной запах пищевых продуктов, в процессе производства которых присутствует тепловая обработка. При этом следует иметь в виду, что в одних случаях их образование имеет положительное значение в общей оценке качества пищевого продукта, в других – может быть нежелательно. Продукты реакции неферментативного потемнения могут не только придавать цвет продукту, но и влиять на другие его свойства. Например, можно отметить двойственную функцию мальтола и этилмальтола. Сами по себе они имеют сильный карамельный аромат и обладают сладостью. Кроме того, мальтол влияет на текстуру пищевого продукта, давая эффект большей "бархатистости". Изомальтол, по сравнению с мальтолом, примерно в 6 раз более эффективен по показателю сладости. Продукты термического разложения сахаров включают пирановые и фурановые соединения, а также фураноны, лактоны, эфиры; наличие тех или иных ароматических соединений придает каждому продукту присущий ему аромат.

При протекании сахар-аминной реакции также образуются ароматические вещества – имидазолы, пиразины, пирролы и др. Например, при взаимодействии D-глюкозы с аминокислотами при 100°С может продуцироваться карамельный аромат (если используемая аминокислота – глицин), аромат ржаного хлеба (валин), шоколада (глютамин). Кроме того, образование тех или иных ароматических веществ зависит от температуры. Например, при реакции D-глюкозы с валином при 100°С – ощущается аромат ржаного хлеба, а при 180°С – аромат шоколада; с пролином – при 100°С – запах жареного белка, а при 180°С – аромат, присущий пекарским изделиям. Гистидин при реакции с D-глюкозой (100°С) не дает никакого аромата, а при 180°С – запах жженого сахара. Аромат, получающийся при реакции D-глюкозы с серосодержащими аминокислотами, отличен от других аминокислот. Так, при взаимодействии D-глюкозы с метионином получаются продукты, имеющие запах картофеля, с цистеином и цистином – запах жареного мяса. С этим необходимо считаться при производстве пищевых продуктов, и в ряде случаев, с точки зрения потребительских свойств, количество летучих ароматических компонентов должно ограничиваться.

166:: 167:: Содержание

167:: 168:: Содержание

Сладость

Ощущение сладости во рту при потреблении низкомолекулярных углеводов характеризует еще одну важную функцию их в пищевых продуктах. В табл. 3.12 дана характеристика относительной сладости различных углеводов по сравнению с сахарозой (сладость которой принимается за 100).

Таблица 3.12. Относительная сладость (ОС) различных углеводов и некоторых искусственных подсластителей

Сахар ОС Сахар или подсластитель ОС
Сахароза   α-D-лактоза  
β-D-фруктоза   β-D-лактоза  
α-D-глюкоза   Ксилоза  
β-О-глюкоза   Сорбит  
α-D-галактоза   Ксилит  
β-D-галактоза   Цикламаты  
α-D-манноза   Аспартам  
β-D-манноза Горькая Сахарин  

167:: 168:: Содержание

168:: 169:: 170:: 171:: Содержание



Поделиться:


Последнее изменение этой страницы: 2016-04-26; просмотров: 724; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.27.154 (0.007 с.)