Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Свойства и превращения глицерофосфолипидовСодержание книги
Поиск на нашем сайте
Глицерофосфолипиды – бесцветные вещества, без запаха, хорошо растворимы в жидких углеводородах и их галогенпроизводных, отдельные группы различаются растворимостью в спиртах, ацетоне. Они существуют в нескольких полимерных формах и плавятся в две стадии. Обладают оптической активностью. Выделенные из природных объектов фосфолипиды – аморфные вещества, перекристаллизованные из органических растворителей – имеют кристаллическую структуру. Химические превращения глицерофосфолипидов обусловлены характером и строением структурных компонентов и видами химических связей. Для них характерны реакции гидролиза кислотами и щелочами. Существует несколько видов гидролаз (A1, A2, B1, B2, С, D), различающихся характером действия на субстрат. Они обнаружены в природных объектах. Принципиальная схема действия фосфолипаз на фосфолипиды: Полярные группы молекул фосфолипидов взаимодействуют с полярными группами молекул белков, углеводов, диполями воды. Взаимодействие глицерофосфолипиды–белки: Взаимодействие глицерофосфолипиды–углеводы: Некоторая часть фосфолипидов не выделяется из масел или выделяется только с помощью специальных приемов гидратации масел (негидратируемые фосфолипиды). По современным представлениям – это комплексные соединения фосфолипидов с ионами металлов (Ca2+, Mg2+, Cu2+, Fe2+ и Fe3+; последние являются катализаторами процессов окисления), а также соединения со стеролами и алифатическими спиртами. В результате энзимической и химической модификации в промышленности получают различные виды производных фосфолипидов (лецитинов): гидролизованные лецитины, гидроксилированные, ацилированные с различными гидрофильно–липофильными характеристиками (ГЛБ от 2 до 12). Они нашли широкое применение в пищевой промышленности. 211:: 212:: 213:: Содержание 213:: 214:: 215:: 216:: Содержание 4.5. МЕТОДЫ ВЫДЕЛЕНИЯ ЛИПИДОВ Анализ липидов и продуктов их превращений является сложной задачей, требующей применения, наряду с классическими химическими методами, современных физико–химических методов исследования (хроматографии, спектроскопии, рентгеноструктурного анализа и т. д.). Изучение липидов начинается с определения их количества (содержания) в пищевых продуктах. Для этого используются методы определения содержания липидов непосредственно в объекте (ЯМР, ИК–спектроскопия) и методы, основанные на извлечении липидов из пищевого продукта (свободные, связанные, прочносвязанные липиды). Свободные липиды экстрагируются из анализируемого продукта неполярными растворителями (гексаном, диэтиловым эфиром), связанные – системами растворителей, содержащими, как правило, спирт (смесь хлороформа и метанола, взятых в объемном соотношении 2: 1). Прочносвязанные липиды получают из обработанного щелочами и кислотами шрота, оставшегося после выделения связанных липидов. Основные требования, предъявляемые к методам выделения, – полнота выделения и сохранение нативности выделенных липидов. Химический состав липидов, выделенных из пищевого сырья и продуктов, исследуется по схеме (см. рис. 4.6), причем в каждом конкретном случае выбирают тот набор анализов, который позволяет получить максимальный объем интересующей исследователей информации. Подробное описание методов выделения и исследования липидов приведено в специальных руководствах. В практике пищевой промышленности состав и качество жиров и масел характеризуют с помощью разнообразных аналитических "чисел", подразумевая под ними расход определенных реагентов на реакции с жиром. Наибольшее значение имеют числа: кислотное, омыления, йодное. Кислотным числом называется показатель, характеризующий количество свободных жирных кислот, содержащихся в жире. Он выражается в миллиграммах едкого калия, затраченного на нейтрализацию свободных жирных кислот, содержащихся в 1 г жира. Учитывая, что хранение пищевых продуктов, содержащих жиры и масла, всегда сопровождается гидролизом последних, по величине кислотного числа можно, до известной степени, судить об их качестве. В заводской практике кислотное число используется при расчете количества щелочи, необходимой для рафинации жиров и масел. Число омыления равно количеству миллиграммов едкого калия, необходимого для омыления глицеридов и нейтрализации свободных жирных кислот в 1 г жира или масла. По числу омыления можно судить о средней молекулярной массе входящих в состав липидов жирных кислот и определить при мыловарении количество щелочи, необходимое для омыления жира. Йодное число – показатель, характеризующий непредельность жирных кислот, входящих в состав жира. Оно выражается в процентах иода, эквивалентного галогену, присоединяющемуся к 100 г жира. Существует несколько методов определения йодного числа. Одним из наиболее распространенных является бромометрический метод. При этом применяется раствор брома в безводном метиловом спирте, насыщенном бромистым натрием. Бром образует непрочное комплексное соединение с бромистым натрием: NaBr + Br2 → NaBr · Br2 Отщепляясь, бром реагирует с ненасыщенными глицеридами: Количество непрореагировавшего брома определяют иодометрически: NaBr + Br2 + 2KI → KBr + NaBr + I2 I2 + 2Na2S2O7 → 2NaI + Na2S4 O6 Зная исходное количество брома, можно легко вычислить йодное число жира. Йодное число широко применяется для определения вида жира, способности его к "высыханию", расчета потребного количества водорода на его гидрогенизацию. Величины указанных констант для отдельных жиров, не подвергшихся разрушению, колеблются в незначительных пределах и характеризуют вид жира и его качество (табл. 4.4). Таблица 4.4. Содержание жирных кислот (в %) и характеристики масел и жиров
213:: 214:: 215:: 216:: Содержание 216:: 217:: 218:: 219:: 220:: Содержание
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 333; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.143.239.63 (0.008 с.) |