Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Взвешенной урожайности зерновых и зернобобовых культурСодержание книги
Поиск на нашем сайте
Для расчёта средней урожайности зерновых и зернобобовых культур с учётом применения второго и третьего свойств средней воспользуемся данными табл. 6.3., получим: Таким образом, применение второго и третьего свойств позволило упростить технику расчёта средней урожайности. Использование четвёртого свойства проверим также на примере данных табл. 6.4: тыс.т как видим, полученный результат (6,4 тыс. т) соответствует валовому сбору, показанному в табл. 6.4, что и подтверждает справедливость четвёртого свойства средней арифметической величины. Она обладает многими другими свойствами, но они играют менее важную роль и поэтому нами не рассматриваются.
Средняя хронологическая величина Одна из разновидностей средней арифметической величины – средняя хронологическая. Исчисленную по совокупности значений признака в разные моменты или за различные периоды времени, принято называть средней хронологической, применяемой для нахождения среднего уровня в динамических рядах. В отличие от вариационного ряда, характеризующего изменение явлений в пространстве, динамический ряд представляет собой такой ряд чисел, который характеризует изменение явлений во времени. Иногда их называют временными или хронологическими. В зависимости от вида динамических рядов для определения их средних уровней могут быть применены соответствующие приемы расчёта средней хронологической величины. Так, при нарождении среднего уровня в периодическом ряду динамики возможно применение средней арифметической простой или взвешенной. Если же необходимо рассчитать средний уровень моментного ряда динамики с равными промежутками времени между моментами, то целесообразно воспользоваться приемом средней хронологической моментного ряда с равными интервалами: , (6.5) где – порядковые уровни моментного ряда; n – число моментов в ряду. Например, в сельскохозяйственной организации (СХО) по состоянию на начало каждого месяца 2010 г. имелось следующее поголовье свиней: на 1 января – 500; на 1 февраля – 600; на 1 марта – 800; на 1 апреля – 1000 голов. По этим данным необходимо рассчитать среднеквартальную численность свиней в СХО. Условно считается, что промежутки (интервалы) времени между начальными моментами (датами) каждого предыдущего и последующего месяца равны между собой. Следовательно, для расчёта среднеквартального поголовья свиней можно применить формулу (6.5). Подставим соответствующие данные и получим: Это означает, что в среднем ежемесячно за первый квартал 2010 г. в СХО имелось 717 голов свиней. В тех случаях, когда необходимо определить средний уровень моментного ряда динамики с неравными промежутками между моментами, обычно используют формулу средней арифметической взвешенной величины (6.4). Например, численность работников в бригаде СХО составляла: на 1 апреля – 20 человек, на 11 апреля –25, на 30 апреля – 36 человек. Необходимо рассчитать среднемесячную численность работников в бригаде за апрель. Как видно из приведённых данных, промежутки времени между указанными моментами (датами) не равны между собой: можно предположить, что в бригаде было на протяжении 1 дня – 20 человек, 10 дней – 25, 19 дней – 36. Следовательно, для расчета среднемесячной численности работников в бригаде воспользуемся формулой (6.4) и получим: Таким образом, за апрель в бригаде СХО числилось в среднем 32 работника. В системе агропромышленного комплекса средняя хронологическая величина может применяться при расчёте средней годовой, квартальной, месячной численности работников, поголовья различных видов и групп сельскохозяйственных животных, наличия различных видов машинно-тракторного парка и других случаях.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 364; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.14.110.171 (0.006 с.) |