Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Определение фокусных расстояний линз

Поиск

КРАТКАЯ ТЕОРИЯ. Линзой называется прозрачное для оптического излучения тело, у которого две противоположные стороны ограничены криволиней­ными поверхностями. Одна из поверхностей может быть плоской. Наибольшее применение имеют линзы со сферическими поверхнос­тями.

Прямая, проходящая через центры кривизны сферических поверхностей линзы, называется главной оптической осью (рис. 1). Если одна из поверх­ностей линзы плоская, то оптическая ось проходит перпендикулярно к ней. Точки пересечения поверхностей линзы с главной оптической осью (рис. 1, точки O1, О2) называются вершинами. Расстояние между вершинами называется толщиной линзы.

Линза называется тонкой, если ее толщина зна­чительно меньше радиусов кривизны ее поверхностей. Точка тонкой линзы, через которую лучи проходят без изменения своего направ­ления, называется оптическим центром линзы. Главная оптическая ось проходит через оптический центр. Любая другая прямая, про­ходящая через оптический центр линзы, называется побочной осью линзы.

Линза называется собирающей, если она пре­образует падающий на нее параксиальный пучок лучей, параллель­ный главной оптической оси, в сходящийся гомоцентрический пу­чок. В противном случае линза называется рассеивающей.

Точка на главной оптической оси, в которой пересекаются па­раксиальные лучи, параллельные главной оптической оси собираю­щей линзы, называется фокусом. В рассеивающей линзе параксиальный пучок лучей, параллель­ный главной оптической оси, преобразуется в расходящийся пучок, продолжения этих лучей пересекаются в точке, лежащей на главной оптической оси. Эта точка называется фокусом рассеивающей линзы.

У любой линзы имеется два фокуса. Расстояние от оптического центра тонкой линзы до фокуса называется фокусным расстоянием. Плоскости, проходящие через фокусы перпендикулярно главной оптической оси, называются фокальными плоскостями. Если среда по обе стороны линзы одна и та же, то модули ее фокусных расстоя­ний равны.

Для параксиальных пучков лучей, ко­торые преобразуются тонкой линзой, выполняется соотношение

, (1)

где a1 — расстояние от линзы до предмета, a2 — расстояние от лин­зы до изображения, f — фокусное расстояние линзы, R1 и R2 — ра­диусы кривизны сферических поверхностей, ограничивающих лин­зу, n — относительный показатель преломления вещества, из кото­рого изготовлена линза. Соотношение (1) называется формулой тонкой линзы.

Правило знаков. При расчетах по форму­ле (1) значения a1 или а2 подставляются со знаком плюс, если направления их отсче­та от оптического центра лин­зы совпадают с направлением распространения света (см. рис. 2). Значе­ния R1 и R2 также подставляются со знаком плюс, если их направле­ния отсчета от вершин сферических поверхностей совпадают с на­правлением распространения света, в противном случае эти значе­ния подставляются со знаками минус. Радиус кривизны R1 относится к той поверхности линзы, которая первой пересекается светом. Зна­чения фокусного расстояния f собирающей линзы подставляются со знаком плюс, рассеи­вающей — со знаком минус.

Отношение показателя преломления окру­жающей линзу среды к ее фокусному расстоянию называется опти­ческой силой:

. (2)

Единица оптической силы — диоптрия (дптр). 1 диоптрия — это оптическая сила линзы, расположенной в воздухе, с фокусным расстоянием 1 м. Оптическая сила — величина алгебраическая: собирающая линза имеет положительную оптическую силу, рассеи­вающая — отрицательную.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА. Для определения фокусных расстояний используется оптическая скамья, на которой с помощью рейтеров устанавливаются освещённое матовое стекло с прямоугольной сеткой, белый экран и соответствующие линзы.

Определение фокусного расстояния собирающей линзы

1-й способ. Перемещением линзы и экрана добиваются получения чёткого изображения сетки на экране. Измеряется расстояние a2 между линзой и экраном. Измеряются линейные размеры сетки y1 и линейные размеры её изображения y2. Находится фокусное расстояние f по формуле:

.

2-й способ. Если расстояние A между сеткой и экраном будет больше 4 f, то посредством перемещения линзы при данном расстоянии A можно получить два изображения предмета - увеличенное и уменьшенное - (рис. 3). В этом случае уравнение (1) можно представить в следующем виде:

Два корня этого уравнения a1 и a′′1 соответствуют двум возможным положениям линзы относительно сетки. На рис. 3 указаны эти положения линзы и соответствующие построения изображений, большему значению a1 (по модулю) соответствуют штриховые линии. Если обозначить разность , то получится расчётная формула: . В этом способе измеряется расстояние между сеткой и экраном А и расстояние l.

ЗАДАНИЕ. Измерить двумя способами фокусное расстояние собирающей линзы.

 

ЛАБОРАТОРНАЯ РАБОТА №5о



Поделиться:


Последнее изменение этой страницы: 2016-04-21; просмотров: 1304; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.41.252 (0.008 с.)