Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Автоматизация вытяжных систем вентиляцииСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте В первом разделе настоящей главы (§ 8.1) рассмотрена схема автоматического регулирования приточной системы вентиляции, обеспечивающая изменение подачи вентилятора при температуре наружного воздуха ниже расчетной. Одновременно с изменением подачи приточного вентилятора должна изменяться и подача вытяжного вентилятора. При автоматизации вытяжной системы (рис. 8.3) подача вытяжного вентилятора изменяется с помощью направляющего аппарата 3 приточного вентилятора. Синхронно, на такой же угол, с помощью балансного реле 1 поворачивается исполнительный механизм 6 направляющего аппарата 5 вытяжного вентилятора. При вентиляции помещений особо опасных производств, не допускающих даже временного отключения вытяжного вентилятора, всегда предусматривается резервная вентиляционная установка. Схема автоматического включения аварийного вытяжного вентилятора приведена на рис. 8.4. Сущность работы этой схемы состоит в следующем. При включении электродвигателя вентилятора 7 открывается сблокированный с ним привод клапана 6, срабатывает реле 3 потока воздуха и загорается сигнальная лампа 4. При аварийном выходе из строя вентилятора 7 движение воздуха прекращается, срабатывает реле 3, выключается магнитный пускатель 5, закрывается створчатый клапан 6 и гаснет сигнальная лампа 4. Одновременно с помощью реле 3 потока воздуха в работу включается вентилятор 9, открывается створчатый клапан 8, срабатывает реле потока 1 и загорается сигнальная лампа 2. При автоматизации вытяжных систем большое значение имеет дистанционное управление, которое особенно эффективно при множестве вентиляционных систем и значительной удаленности их друг от друга. В этом случае все управление и сигнализация выводятся на диспетчерский щит, что позволяет сократить затраты труда на обслуживание вентиляционных систем, а также контролировать их работу. При этом пуск и остановку вентиляционных систем можно осуществлять не только со щита диспетчера, но и с местного щита, находящегося непосредственно у вентиляционной установки. Управление с местного щита может производиться только в случае, когда переключатель 6 (ключ), устанавливаемый на щите диспетчера, находится в положении «ручное». Если же ключ находится в положении «автоматика», система управляется дистанционно.
АВТОМАТИЗАЦИЯ СИСТЕМ КОНДИЦИОНИРОВАНИЯ ВОЗДУХА Системы кондиционирования воздуха (СКВ) предназначены для создания и автоматического поддержания необходимых параметров воздуха в помещениях (температуры, относительной влажности, чистоты, скорости движения и др.). В зависимости от назначения СКВ разделяются на технологические, обеспечивающие состояние воздушной среды, удовлетворяющее требованиям конкретного технологического процесса, и комфортные, создающие благоприятные условия для человека. В зависимости от конструкции кондиционеры подразделяются на секционные и агрегатные, а по оснащенности устройствами для получения тепла и холода их делят на автономные и неавтономные. Автономные кондиционеры снабжаются извне только электроэнергией. Для работы неавтономных кондиционеров необходима подача извне тепло- и холодоносителя, а также электроэнергии для привода двигателей вентиляторов и насосов. Рассмотрим вначале основные принципы автоматизации установки комфортного кондиционирования воздуха, предназначенной для поддержания заданной температуры и влажности в помещении (рис. 8.5). Для зимних условий воздух обрабатывается по следующей схеме. Наружный воздух сначала подогревается в утилизаторе У от точки Н3 до точки У3, а затем в воздухоподогревателе первой ступени от точки У3 до значения I к. В результате адиабатического увлажнения при постоянной энтальпии воздух приобретает параметры, соответствующие точке К 3. В воздухоподогревателе второй ступени воздух нагревается до точки П 3, и подается в помещение. По мере повышения энтальпии наружного воздуха сокращается его нагрев в воздухоподогревателе первой ступени, и при достижении энтальпии I к подогрев должен быть отключен. Наступает переходный режим, который характеризуется постоянной внутренней температурой t 3 и меняется в зависимости от энтальпии наружного воздуха и относительной влажности внутри помещения. Исходя из условий комфортности допустимы колебания относительной влажности в пределах 40—60%. При энтальпии наружного воздуха выше I п в обслуживаемом помещении целесообразно поддерживать максимальную по комфортным условиям относительную влажность воздуха (до 60%), допуская при этом значительные колебания внутренней температуры. Поскольку колебания внутренней температуры связаны с изменением энтальпии наружного воздуха, в теплое время создается некоторый «динамический» климат, характеризующийся лучшими условиями для самочувствия человека, чем статический при постоянной температуре. Одновременно обеспечивается некоторая экономия расхода холода. При энтальпии наружного воздуха I н предусматривается только адиабатическое увлажнение. На воздухонагреватель второй ступени в это время воздействует датчик относительной влажности φ, установленный в помещении, с помощью которого при отклонении влажности в большую сторону увеличивается поступление теплоносителя в воздухонагреватель. Пунктирная линия на рис. 8.5 (от t п до t л ) показывает, что датчик должен быть настроен на 57—58% во избежание увеличения значения φ свыше 60%. Это вызвано недопустимостью более высокой относительной влажности и желанием сохранить установленную рабочую разность температур между внутренним и приточным воздухом. Летний режим работы системы кондиционирования начинается при достижении наружным воздухом энтальпии I л. В это время требуется подача холодной воды в оросительную камеру для поддержания параметров воздуха К л. Для этой цели за оросительной камерой устанавливают датчик температуры, с помощью которого по мере повышения температуры увеличивается подача холодной воды в камеру. Поскольку за форсуночной камерой температура воздуха неодинаковая, возможны выносы капель влаги и попадание их на измеритель температуры. Кроме того, учитывая отрицательное влияние лучистого тепла от воздухоподогревателя второго подогрева, регулирование целесообразно осуществлять по сигналам датчика температуры, установленного в помещении. К достоинствам этого способа следует отнести и то обстоятельство, что в нем учитывается и теплоаккумулирующая способность помещения. Измеритель температуры, установленный в помещении, настраивается на значение температуры, определяемое точкой t л, и воздействует на подачу холодной воды в оросительную камеру. Построенная на основе схемы такой обработки воздуха система автоматизацииприведена на рис.8.6. В зимний период за ороси-
тельной камерой с помощью пропорционального регулятора поддерживается заданная температура (поз. 1). Измеритель, настроенный на температуру t р 3, воздействует на исполнительный механизм регулирующего органа на обратном трубопроводе теплоносителя к воздухоподогревателю КП первого подогрева. Оросительная камера обеспечивает адиабатическое увлажнение наружного воздуха до 90—95%. По мере повышения энтальпии наружного воздуха уменьшается его подогрев, и при энтальпии I к первый подогрев выключается. Температура внутреннего воздуха регулируется двухпозиционным регулятором (поз. 2). Датчик температуры, установленный в помещении и настроенный на поддержание температуры t 3, воздействует через запретно-разрешающее устройство (поз. 3) на воздухонагреватель КП второго подогрева. Запретно-разрешающее устройство включается в цепь для переключения регулирования по температуре внутри помещения на регулирование по относительной влажности. Такое переключение производится в тот момент, когда относительная влажность в помещении приближается к 60%. В этот момент температура воздуха за оросительной камерой повысится до значения t р.п. Сигнал от этого датчика поступает на запретно-разрешающее устройство, которое производит переключение датчика температуры внутри помещения на датчик относительной влажности. В теплое время внутри помещения с помощью пропорционального регулятора (поз. 6) поддерживается постоянная относительная влажность при изменяющихся значениях температуры. Датчик влажности, как и в зимнее время, через промежуточное реле РП и запретно-разрешающее устройство воздействует на воздухоподогреватель второй ступени. При увеличении относительной влажности выше 60% включается второй подогреватель и температура достигает такого значения, при котором относительная влажность становится меньше 60% и соответствует определенной энтальпии наружного воздуха. Летний режим, при котором необходимо применение холодной воды, наступает при температуре внутри помещения, соответствующей средней летней комфортной. В этот момент срабатывает второй датчик температуры, настроенный на t л. Регулятор температуры (поз. 5) воздействует на подачу холодной воды в камеру орошения. В помещении стабилизируются сразу два параметра: температура и относительная влажность воздуха. На разные регулирующие органы воздействуют сразу два регулятора, что позволяет поддерживать относительную влажность с точностью ±5% и расходовать минимум холода. Повышение точности стабилизации параметров микроклимата может быть достигнуто также синтезом стабилизации с коррекцией по отклонениям от заданных температуры и относительной влажности воздуха в помещении. Это обеспечивается переходом от одноконтурных к двухконтурным каскадным системам стабилизации, которые, по существу, должны быть основными системами регулирования температуры и влажности воздуха. Работа каскадных систем основана на регулировании не одним, а двумя регуляторами, причем регулятор, контролирующий отклонение основной регулируемой величины от заданного значения, воздействует не на регулирующий орган объекта, а на задатчик вспомогательного регулятора. Этот регулятор поддерживает на заданном уровне некоторую вспомогательную величину промежуточной точки объекта регулирования. Так как инерционность регулируемого участка первого контура регулирования незначительная, в этом контуре может быть достигнуто относительно большое быстродействие. Первый контур называется стабилизирующим, второй — корректирующим. Функциональная схема каскадной системы для прямоточной СКВ показана на рис. 8.7. Первая система обеспечивает стабилизацию температуры воздуха после воздухоподогревателя второго подогрева с коррекцией по температуре воздуха в объекте регулирования (помещении) путем изменения расхода теплоносителя в воздухонагревателе (регулятор ТС2). Корректирующее воздействие осуществляется с помощью корректирующего регулятора ТС2. Таким образом, система регулирования температуры воздуха после воздухонагревателя второго подогрева включает цепь регулирования температуры воздуха путем изменения расхода теплоносителя и цепь коррекции, изменяющую задание регулятора ТС2 в зависимости от изменения температуры воздуха в помещении. Во вторую систему стабилизации входят чувствительный элемент температуры точки росы, установленный после камеры орошения, и регулятор ТС1 управляющий последовательно исполнительными механизмами клапанов оросительной камеры, воздухонагревателя первого подогрева и смесительно-регулирующих воздушных клапанов наружного и рециркуляционного воздуха. Корректирующее воздействие на регулятор ТС1 осуществляется с помощью регулятора влажности МС1, датчик которого установлен в помещении. В последние годы при реализации рассмотренных принципов автоматизации систем кондиционирования воздуха все чаще применяют микропроцессорные регуляторы.
|
||
Последнее изменение этой страницы: 2016-04-19; просмотров: 2053; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.190.6 (0.009 с.) |