Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Метод логарифмического дифференцированияСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Метод логарифмического дифференцирования удобен для нахождения производной показательной функции
Пример Найти производную функции Решение Здесь основание и показатель степени зависит от х. Логарифмируем обе части равенства
применяя свойства логарифмов, получим
Продифференцируем обе части последнего равенства по х, рассматривая у как функцию х:
умножим обе части равенства на у и подставим вместо у его выражение
Производная функции, заданной неявно
Дифференцирование функций, заданных неявно, опирается на возможность почленного дифференцирования тождеств. В общем случае уравнение почленно дифференцировать нельзя. Пусть функция Продифференцировав
Пример Найти производную функции, заданной неявно: Решение Продифференцируем обе части данного уравнения по аргументу х:
Дифференцирование функций, заданных параметрически
Пусть функция (1) Требуется найти производную Имеет место формула
Пример Найти производную функции, заданной параметрически: Решение Найдем производные функций х и у по переменной t:
Согласно формуле
Исследование функций и построение графиков функций Одна из возможных схем исследования функции и построения ее графика включает следующие этапы решения задачи:
1. Найти область определения функции. 2. Найти точки пересечения графика функции с осями координат. 3. Определить четность, нечетность. 4. Найти точки разрыва функции и асимптоты графика функции. 5. Исследовать функцию на экстремум, найти интервалы монотонности функции, точки максимума и минимума. 6. Найти интервалы выпуклости, вогнутости графика функции и точки перегиба. 7. Построить график функции.
Пример С помощью методов дифференциального исчисления исследовать и построить график функции Решение 1. Область определения функции находится из условия: 2. Точки пересечения графика функции с осями координат: с осью Оу, с осью Ох, 3. Четность, нечетность. Функция В нашем случае, 4. Точки разрыва функции и асимптоты графика функции. 1) Вертикальные асимптоты. Прямая
равен Заданная функция имеет две точки разрыва второго рода
следовательно, график функции имеет две вертикальных асимптоты 2) Горизонтальные асимптоты. Горизонтальная асимптота – частный случай наклонной асимптоты, когда Чтобы найти горизонтальные асимптоты графика функции, нужно найти пределы:
Если эти пределы конечны и различны, то прямые Так как
то график функции имеет горизонтальную асимптоту
3) Наклонные асимптоты. Пусть прямая
Аналогично находится асимптота при Так как
5. Исследование функции на экстремум. Для определения интервалов возрастания и убывания функции и ее точек экстремума найдем первую производную:
Найдем критические точки, т.е. точки, в которых производная равна нулю или не существует, для чего приравниваем числитель
_ _ _ х -6 6 у
6. Исследование на выпуклость, вогнутость. Точки перегиба. Вычислим производную второго порядка:
_ + _ + х
Так как при переходе через точку
7. Построение графика функции.
|
||||
|
Последнее изменение этой страницы: 2016-04-21; просмотров: 696; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.220 (0.009 с.) |