Модели, приводящие к необходимости численного дифференцирования и интегрирования функций 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Модели, приводящие к необходимости численного дифференцирования и интегрирования функций



Численный метод решения задачи - это определенная последовательность операций над числами, т.е. вычислительный алгоритм, языком которого являются числа и арифметические действия. Такая примитивность языка позволяет реализовать численные методы на ЭВМ, что делает их мощными и универсальными инструментами исследования. Численные методы используются в тех случаях, когда не удается найти точное решение возникающей математической задачи. Это происходит главным образом, потому, что искомое решение обычно не выражается в привычных для нас элементах или других известных функциях. Даже для достаточно простых математических моделей иногда не удается получить результат решения в аналитической форме. В таких случаях основным инструментом решения многих математических задач выступают численные методы, позволяющие свести решение задачи к выполнению конечного числа арифметических действий над числами, при этом результаты получаются также в виде числовых значений.

Численное интегрирование (историческое название: (численная) квадратура) — вычисление значения определённого интеграла (как правило, приближённое). Под численным интегрированием понимают набор численных методов для нахождения значения определённого интеграла.

Численное интегрирование применяется, когда:

1. Сама подынтегральная функция не задана аналитически. Например, она представлена в виде таблицы (массива) значений в узлах некоторой расчётной сетки.

2. Аналитическое представление подынтегральной функции известно, но её первообразная не выражается через аналитические функции. Например, .

Метод прямоугольников — метод численного интегрирования функции одной переменной, заключающийся в замене подынтегральной функции на многочлен нулевой степени, то есть константу, на каждом элементарном отрезке.

Метод трапеций — метод численного интегрирования функции одной переменной, заключающийся в замене на каждом элементарном отрезке подынтегральной функции на многочлен первой степени, то есть линейную функцию.

Формула Симпсона (также Ньютона-Симпсона) относится к приёмам численного интегрирования. Получила название в честь британского математика Томаса Симпсона (1710—1761).

Суть метода заключается в приближении подынтегральной функции на отрезке интерполяционным многочленом второй степени , то есть приближение графика функции на отрезке параболой. Метод Симпсона имеет порядок погрешности 4 иалгебраический порядок точности 3.

Метод Гаусса — метод численного интегрирования, позволяющий повысить алгебраический порядок точности методов на основе интерполяционных формул путём специального выбора узлов интегрирования без увеличения числа используемых значений подынтегральной функции. Метод Гаусса позволяет достичь максимальной для данного числа узлов интегрирования алгебраической точности.

Численное дифференцирование совокупность методов вычисления значения производной дискретно заданной функции. В основе численного дифференцирования лежит аппроксимация функции, от которой берется производная, интерполяционным многочленом. Все основные формулы численного дифференцирования могут быть получены при помощи первого интерполяционного многочлена Ньютона (формулы Ньютона для начала таблицы).

Основными задачами являются вычисление производной на краях таблицы и в ее середине. Для равномерной сетки формулы численного дифференцирования «в начале таблицы» можно представить в общем виде следующим образом:

где — погрешность формулы. Здесь коэффициенты и зависят от степени n использовавшегося интерполяционного многочлена, то есть от необходимой точности (скорости сходимости к точному значению при уменьшении шага сетки) формулы

Задача численного дифференцирования возникает в случае, когда функция задана таблично или сложным аналитическим выражением.

Большинство формул численного дифференцирования получается дифференцированием интерполяционных формул. Так, получив интерполяционный многочлен Лагранжа, обычным дифференцированием можно получить его производные любого порядка (не следует только забывать о возможном возрастании погрешности).

 



Поделиться:


Последнее изменение этой страницы: 2016-07-16; просмотров: 698; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.223.134.29 (0.004 с.)