Каноническое уравнение прямой 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Каноническое уравнение прямой



8 Уравнение пучка прямых с центром в точке А(x1, y1) имеет вид:

y-y1 = (x-x1),

где  - параметр пучка. Если пучок задается двумя пересекающимися прямыми A1 x + B1 y + C1= 0, A2 x + B2 y + C2 = 0, то его уравнение имеет вид:

 (A1 x + B1 y + C1) +  (A2 x + B2 y + C2)=0,

где  и  - параметры пучка, не обращающиеся в 0 одновременно.

Величина угла между прямыми y = kx + b и y = k1 x + b1 задается формулой:

tg  = .

Равенство 1 + k1 k = 0 есть необходимое и достаточное условие перпендикулярности прямых.

Параллельные прямые

Для того, чтобы два уравнения

A1 x + B1 y + C1= 0, (7)

A2 x + B2 y + C2 = 0, (8)

задавали одну и ту же прямую, необходимо и достаточно, чтобы их коэффициенты были пропорциональны:

A1/A2 = B1/B2 = C1/C2.

Уравнения (2.7), (2.8) задают две различные параллельные прямые, если A1/A2 = B1/B2 и B1/B2  C1/C2; прямые пересекаются, если A1/A2 не = B1/B2.

Расстояние от точки до прямой

 

Расстояние d от точки Mо(xо, yо) до прямой есть длина перпендикуляра, проведенного из точки Mо к прямой. Если прямая задана нормальным уравнением, то d = rо nо - р , где rо - радиус-вектор точки Mо или, в координатной форме, d = xо cos + yо sin - р .

Угол между двумя прямыми

Необходимое и достаточное условие перпендикулярности двух прямых

или или

Расстояние между параллельными прямыми

Если прямые заданы уравнениями и то

а если уравнениями и то

 

8. Прямая линия в пространстве. Способы задания

Прямая в пространстве может быть задана:

1) как линия пересечения двух плоскостей, т.е. системой уравнений:

A1 x + B1 y + C1 z + D1 = 0, A2 x + B2 y + C2 z + D2 = 0; (2)

2) двумя своими точками M1(x1, y1, z1) и M2(x2, y2, z2), тогда прямая, через них проходящая, задается уравнениями:

= ; (3)

3) точкой M1(x1, y1, z1), ей принадлежащей, и вектором a (m, n, р), ей коллинеарным. Тогда прямая определяется уравнениями:

. (4)

Уравнения (4) называются каноническими уравнениями прямой.

Вектор a называется направляющим вектором прямой.

Параметрические уравнения прямой получим, приравняв каждое из отношений (3.4) параметру t:

x = x1 +mt, y = y1 + nt, z = z1 + рt. (5)

Решая систему (3.2) как систему линейных уравнений относительно неизвестных x и y, приходим к уравнениям прямой в проекциях или к приведенным уравнениям прямой:

x = mz + a, y = nz + b. (6)

От уравнений (6) можно перейти к каноническим уравнениям, находя z из каждого уравнения и приравнивая полученные значения:

.

От общих уравнений (2) можно переходить к каноническим и другим способом, если найти какую-либо точку этой прямой и ее направляющий вектор n = [n1, n2], где n1(A1, B1, C1) и n2(A2, B2, C2) - нормальные векторы заданных плоскостей. Если один из знаменателей m, n или р в уравнениях (4) окажется равным нулю, то числитель соответствующей дроби надо положить равным нулю, т.е. система

равносильна системе ; такая прямая перпендикулярна к оси Ох.

Система равносильна системе x = x1, y = y1; прямая параллельна оси Oz.

На практике можно пользоваться готовой формулой: если прямая задана пересечением двух плоскостей , то вектор является направляющим вектором данной прямой.

 

9. Плоскость, способы её задания

Всякое уравнение первой степени относительно координат x, y, z

Ax + By + Cz +D = 0 (1) задает плоскость, и наоборот: всякая плоскость может быть представлена уравнением (1), которое называется уравнением плоскости.

Вектор n (A, B, C), ортогональный плоскости, называется нормальным вектором плоскости. В уравнении (1) коэффициенты A, B, C одновременно не равны 0.

Особые случаи уравнения (1):

1) By + Cz + D = 0 - параллельна оси Ox;

2) Ax + Cz + D = 0 - параллельна оси Oy;

3) Ax + By + D = 0 - параллельна оси Oz;

4) Cz + D = 0 - параллельна оси Oxy;

5) By + D = 0 - параллельна оси Oxz;

6) Ax + D = 0 - параллельна оси Oyz;

7) Ax + By + Cz = 0 - проходит через начало координат;

8) By + Cz = 0 - проходит через ось Ox;

9) Ax + Cz = 0 - проходит через ось Oy;

10) Ax + By = 0 - проходит через ось Oz;

11) z = 0 - плоскость Oxy;

12) y = 0 - плоскость Oxz;

13) x = 0 - плоскость Oyz.

Уравнения координатных плоскостей: x = 0, y = 0, z = 0.

Уравнение плоскости в отрезках

где a, b, c - величины отрезков, отсекаемых плоскостью на осях координат.


Нормальное уравнение плоскости

где - углы, образуемые нормальным вектором плоскости с осями координат; p - расстояние от начала координат до плоскости.

Приведение общего уравнения плоскости к нормальному виду:

Здесь - нормирующий множитель плоскости, знак которого выбирается противоположным знаку D, если произвольно, если D = 0.

Уравнение плоскости по точке и нормальному вектору

В векторном виде

В координатах



Поделиться:


Последнее изменение этой страницы: 2016-04-21; просмотров: 447; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.19.56.114 (0.014 с.)