ТОП 10:

Техника текстильного производства



Первые капиталистические мануфактуры возникли в текстильном производстве. В XVI в. к самопрялке был присоединен ножной педальный механизм, в результате чего освободилась правая рука прядильщика, которой раньше он вращал рукоятку колеса.

Работая на самопрялке, прядильщик левой рукой вытягивал из пучка несколько волокон, слегка ссучивал их и направлял в боковое отверстие веретена, откуда нить шла по каналу веретена и затем по крылу рогульки до одного из крючков или отверстий, направлявших нить на катушку под прямым углом к ее оси. Нажимая ногой на педаль, прядильщик приводил в движение большое колесо, которое вращало катушку, наматывавшую на себя нить.

В суконной мануфактуре применялись почти исключительно ручные орудия труда. Суконные изделия вырабатывались двух видов: сукна из короткой и рыхлой шерсти, длинных и извилистых волокон.

В мануфактурный период машины при изготовлении сукна начинают применять лишь в двух операциях: для валяния сукон (гидравлическая сукновальня) и ворсования материи. Особенностью производства шелковых тканей являлось то, что в нем отсутствовала операция прядения, а для получения материи было необходимо лишь соединять и скручивать тонкие коконовые нити. Это позволило здесь раньше, чем в других отраслях текстильного производства, применить машины.

Часы и мельница как основа для создания машин. Первые машины и изобретательство

Большую роль в развитии техники в XVII в., и в особенности в XVIII в., сыграли часы и мельница, о значении которых К. Маркс писал: «…две материальные основы, на которых внутри мануфактуры строилась подготовительная работа для перехода к машинной индустрии, это – часы и мельница…». В XIII в. появились механические часы башенного типа с одной стрелкой. Эти первые механические часы приводились в движение грузом, подвешенным на канате к барабану. В конце XV в. были изобретены пружинные переносные часы, приводившиеся в движение свернутой упругой пружиной. Х. Гюйгенс впервые в 1657 г. применил в качестве регулятора в стационарных часах маятник, а переносных частях – упругую спираль. Для регулятора хода часов с упругой спиралью он применил балансир, т.е. изобрел специальный спуск для передачи маятнику и пружинам импульсов.

Второй материальной основой для создания машинного производства являлись мельницы. В качестве двигательной силы для привода в движение мельниц стало возможным использовать животных, ветер и воду. Изобретение, а затем широкое применение механических часов позволило изучить равномерное движение и натолкнуло на мысль применить принцип автоматизма для производственных целей. Развитие мельниц способствовало тому, что принцип освобождения руки человека от соприкосновения с предметом труда был перенесен на другие трудовые процессы.

Машина как механизм или сочетание механизмов, осуществляющих определенные целесообразные движения для преобразования энергии или производстве работы, появилась еще в древности. В зависимости от основного назначения различают машины-двигатели, с помощью которых один вид энергии преобразуется в другой, и рабочие машины, с помощью которых производится изменение формы, свойств, состояния и положения объекта труда.

В мануфактурный период особенно быстро развивался первый вид машин. Рабочие машины применялись спорадически и в основном в подготовительных и вспомогательных процессах. Применение машин и мануфактурный период наталкивалось на сопротивление рабочих.

Состояние естествознания

(см. документы №№ 20-21 хрестоматии)

Суть научной революции XVII в. интерпретируется как первое прямое и систематическое "вопрошание" Природы. Разработка эксперимента и создание специального научного языка описания диалога с Природой составляет главное содержание научной революции, которая прошла в своем развитии три периода.

Первый, связанный, прежде всего, с деятельностью Г. Галилея- формирование новой научной парадигмы; второй - с Р. Декартом- формирование теоретико-методологических основ новой науки; и третий - "главным" героем которого был И. Ньютон, - полное завершение новой научной парадигмы - начало современной науки.

Естествознание получило мощный импульс в эпоху Возрождения. «Это был, - писал Ф. Энгельс, - величайший прогрессивный переворот из всех пережитых до того времени человечеством, эпоха, которая нуждалась в титанах и которая породила титанов по силе мысли, страсти и характеру, по многосторонности и учености».

Л. да Винчи говорил: «Влюбленный в практику без науки – словно кормчий, ступающий на корабль без руля или компаса; он никогда не уверен, куда плывет». Л. да Винчи занимался механикой, математикой, физикой, астрономией, геологией, ботаникой, анатомией и физиологией человека и животных. В области механики он ставил эксперименты и стремился определить коэффициент трения, скольжения. Л. да Винчи принадлежат первые попытки в области воздухоплавания и конструирования летательных аппаратов.

Период развития естествознания как науки начался со второй половины XV в. и продолжался до конца XVIII в. Естествознание ставило перед собой задачу изучения механического движения и познания его законов.

Развитию механики способствовали также особенности научного процесса познания явлений. Энгельс писал: «…изучение природы движения должно было исходить от низших, простейших форм его и должно было научиться понимать их прежде, чем могло дать что-нибудь для объяснения высших и более сложных форм его».

Рассматриваемый период развития естествознания характеризовался созданием основ механики. Большое значение для развития механики имело учение Н. Коперника (1473-1543). Гелиоцентрическая система мира – это учение, которое признает и доказывает, что Земля – это одна из планет, вращающихся вокруг Солнца, и что она, помимо этого, вращается вокруг своей оси. Также существовало геоцентрическая система мира, т.е. учение, согласно которому считалось, что Земля находится в центре всей Вселенной. Сочинение Н. Коперника «Об обращении небесных сфер»(1543г.) – одно из выдающихся произведений в истории науки.

Г. Галилей сделал ряд открытий в области астрономии и показал, что наблюдаемые при помощи телескопов явления соответствуют гелиоцентрической системе мира. Он провел большую работу по созданию принципов механики и впервые точно сформулировал основные кинематические понятия (скорость, ускорение); установил количественный закон падения тел в пустоте, согласно которому расстояния, проходимые падающим телом в одинаковые промежутки времени, относятся как последовательные нечетные числа. Ему же принадлежит формулировка исходного закона динамики – принципа инерции. Г. Галилей открыл законы колебания маятника и первый выдвинул идею относительности движения.

И. Кеплер (1571-1630) открыл законы движения планет. И. Ньютон (1643-1727) сформулировал эти законы под углом зрения общих законов движения материи.

В этот период в естествознании сложились метафизические взгляды, в основу которых было положено представление об абсолютной неизменности природы. В соответствии с этими взглядами возникли различные учения о «невесомых материях», которые воплощали идею абсолютности, неизменности сил природы. Для объяснения ряда процессов, например металлургических, немецким ученым Г.Э. Сталем (1660-1734) была создана так называемая теория «флогистона». «Флогистон», по его мнению, - это гипотетическая материя, «горючее начало». Именно существованием этой материи и объясняли химики XVII-XVIII в. процессы горения, окисления и дыхания.

Английский ученый Гарвей является одним из основоположников научной физиологии. Ему принадлежит открытие кровообращения.

Большую роль в развитии медицины и смежных с ней отраслей сыграло на рубеже XVI-XVII вв. введение микроскопирования. В 1609-1610 гг. Г. Галилей сконструировал свой первый микроскоп. Первые микроскопы давали хорошее, неискаженное изображение с увеличением до 300 раз. А. Левенгук впервые наблюдал мир инфузорий.

В мануфактурный период в связи с развитием добычи минерального сырья для выплавки металлов и для нужд медицины были накоплены обширные сведения о минералах и рудах. Для этого периода было характерным возникновение нового кристаллографического направления. М.В. Ломоносов положил начало эволюционному направлению и сравнительно-историческому методу в геологии. Он первым высказал идею о геологическом времени.

Острая борьба развернулась в геологии между двумя противоположными направлениями – нептунизмом и плутонизмом. Основоположником нептунизма является шведский химик и минералог Т. Бергман, который в 1769 г. впервые высказал мысль, что кристаллические породы образовались путем химической кристаллизации из вод «первозданного» океана, а слоистая порода представляет собой продукт разрушения кристаллических пород и отложилась якобы при «всемирном потопе». Дж. Геттон заложил начала плутонизма, согласно которому происхождение всех горных пород объяснялись действием «подземного жара».

Ученик Э. Галилея Э. Торричелли открыл существование атмосферного давления и создал ртутный барометр. Б. Паскаль доказал, что столб жидкости в барометре поддерживается атмосферным давлением. В 1662 г. Р. Бойль установил существование зависимости объема воздуха от давления. Первые наблюдения над действием электрических сил были сделаны еще Ф. Милетским в Греции за 600 лет до н. э. В 1600 г. У. Джильберт установил, что многие тела, подобно янтарю, обладают способностью притягивать легкие предметы после натирания. Он назвал их «электрическими» и тем самым ввел этот термин в науку. Электрические свойства тел Джильберт объяснил тем, что в телах имеется некоторая специфическая электрическая субстанция, выходящая из них при трении и обусловливающая притяжение и отталкивание. Ш. Ф. Дюфе сконструировал прибор для обнаруживания и примитивного измерения электричества – прототип современного электроскопа. В. Франклин сформулировал закон сохранения заряда, сущность которого заключалась в том, что избыток электричества в теле по сравнению с нормальным количеством означает положительный заряд, а недостаток его указывает на отрицательный заряд. При электризации тел электричество переходит с одного тела на другое, общее же его количество остается неизменным. Г.В. Рихман ввел в науку об электричестве количественные измерения, для чего изобрел электроизмерительный прибор - «электрический указатель». В 1767 г. английский химик Дж. Пристли высказал мысль о том, что существует определенное количественное взаимодействие двух электрических зарядов. В 1785 г. Ш. О. Кулон опытным путем с помощью изобретенных им крутильных весов установил зависимость силы между двумя покоящимися электрическими зарядами от их величины и от расстояния между ними.

К началу XIX в. уже были созданы основные представления об электричестве; были изучены важнейшие явления электростатики и дана ее математическая разработка.

В XVII в. крупнейшим достижением в математике явилось открытие логарифмов, которое сделали Дж. Непер и И. Бюрги. Выдающийся французский философ, физик и математик Р. Декарт опубликовал в 1637 г. работу «Геометрия», содержащую основы метода координат в геометрии. П. Ферма и Р. Декарт, Б. Кавальери и Э. Торричелли подготовили почву для создания дифференциального и интегрального исчисления.

Основы нового типамировоззрения,новой науки были заложеныЭ.Галилеем. Он начал создавать ее какматематическое и опытное естествознание.Исходной посылкой было выдвижение аргумента, что для формулирования четких суждений относительно природы ученым надлежит учитывать толькообъективные,поддающиесяточному измерению свойства,тогда как свойства, просто доступные восприятию, следует оставить без вниманиякак субъективные и эфемерные.Лишь с помощью количественного анализанаука может получить правильные знания о мире. А чтобы глубже проникнуть в математические законы и постичь истинный характер природы,Г. Галилей усовершенствовал и изобрел множествотехнических приборов-линзу, телескоп, микроскоп, магнит, воздушный термометр, барометри др. Использование этих приборов придавало эмпиризму новое, неведомое грекам измерение. Прежние дедуктивные схоластические размышления о вселенной должны были уступить место ничем нескованному экспериментальному ее исследованию с целью постижения действующих в нейбезличных математических законов.Галилей нашел подлинно научную точку соприкосновенияопытно-индуктивного и абстрактно-дедуктивного способовисследования природы,дающую возможность связать научное мышление, невозможное без абстрагирования и идеализации, с конкретным восприятием явлений и процессов природы.

Особое значение для нас имеют открытия Г. Галилея в области механики, т. к. с помощью новых категорий и методологии он взялся разрушить догматические построения господствовавшей аристотелевской схоластической физики, основывавшейся на поверхностных наблюдениях и умозрительных выкладках, переполненной телеологическими представлениями о движении вещей в соответствии с их природой и целью, о естественных и насильственных движениях, о природной тяжести и легкости тел, о совершенстве кругового движения по сравнению с прямолинейным и т.д. Именно на основе критики аристотелевской физики Г. Галилей создал свою программу строительства естествознания.

Г. Галилейразработал динамику - науку о движении тел под действием приложенных сил. Он сформулировал первые законы свободного падения тел, дал строгую формулировку понятий скорости и ускорения, осознал решающее значение свойства движения тел, в будущем названного инерцией. Очень ценна была высказанная им идея относительности движения. Философское и методологическое значение законов механики, открытых Г. Галилеем, было огромным, ибо впервые в истории человеческой мысли было сформулировано само понятие физического закона в современном значении. Законы механики Г. Галилеявместе с его астрономическими открытиями подводили ту физическую базу под теорию Н. Коперника, которой сам ее творец еще не располагал. Из гипотезыгелиоцентрическая доктрина теперь начинала превращаться в теорию.

Завершить коперниковскую революцию выпало И. Ньютону. Он доказал существованиетяготения как универсальной силы-силы, которая одновременно заставляла камни падать на Землю и была причиной замкнутых орбит, по которым планеты вращались вокруг Солнца.Заслуга И. Ньютона была в том, что он соединилмеханистическую философию Р.Декарта,законы Кеплераодвижении планет и законыГ.Галилеяо земном движении,сведя их в единую всеобъемлющую теорию.После целого ряда математических открытий Ньютон установил: для того чтобы планеты удерживались на устойчивых орбитах с соответственными скоростями и на соответствующих расстояниях, определяющихся третьим закономКеплера, их должна притягивать к Солнцу некая сила, обратно пропорциональная квадрату расстояния до Солнца;этому закону подчиняются и тела, падающие на Землю (это касалось не только камней, но и Луны - как земных, так и небесных явлений). Кроме того,И.Ньютон математическим путем вывел на основании этого закона эллиптическую форму планетных орбит и перемену их скоростей, следуя определениям первого и второго закона Кеплера. Был получен ответ на важнейшиекосмологические вопросы,стоящие перед сторонниками Н. Коперника, - что побуждает планеты к движению, как им удается удерживаться в пределах своих орбит, почему тяжелые предметы падают на Землю? - и разрешен спор об устройстве Вселенной и о соотношении небесного и земного.Коперниковская гипотеза породила потребность в новой, всеобъемлющей и самостоятельной космологии и отныне ее обрела.

С помощью трех законов движения (закон инерции, закон ускорения и закон равного противодействия) и закона всемирного тяготения И. Ньютон не только подвел научный фундамент под законы Кеплера, но и объяснил морские приливы, орбиты движения комет, траекторию движения пушечных ядер и прочих метательных снарядов. Все известные явления небесной и земной механики были теперь сведены под единый свод физических законов. Было найдено подтверждение взглядам Р. Декарта, считавшего, что природа есть совершенным образом упорядоченный механизм, подчиняющийся математическим законам и постижимый наукой.

Крупнейшим достижениемнаучной революциистало крушениеантично-средневековой картины мираи формирование новых черт мировоззрения, позволивших создать науку Нового времени.Основу естественнонаучной идеологии составили следующие представления и подходы:натурализм-идея самодостаточности природы, управляемой естественными, объективными законами;механицизм- представление мира в качестве машины, состоящей из элементов разной степени важности и общности;отказ от доминировавшего ранее символически-иерархического подхода,представлявшего каждый элемент мира как органическую часть целостного бытия;квантитативизм-универсальный метод количественного сопоставления и оценки всех предметов и явлений мира,отказ от качественного мышления античности и Средневековья;причинно-следственный автоматизм-жесткая детерминация всех явлений и процессов в мире естественными причинами, описываемыми с помощью законов механики;аналитизм-примат аналитической деятельности над синтетической в мышлении ученых, отказ от абстрактных спекуляций, характерных для античности и Средневековья;геометризм-утверждение картины безграничного однородного, описываемого геометрией Евклида и управляемого едиными законами космического универсума.

Вторым важнейшим итогом научной революции стало соединение умозрительной натурфилософскойтрадиции античности и средневековой науки с ремесленно-технической деятельностью, с производством. Еще одним результатом научной революции стало утверждение гипотетико-дедуктивной методики познания. Основу этого метода, составляющего ядро современного естествознания, образует логический вывод утверждений из принятых гипотез и последующая их эмпирическая проверка.

Только спустя несколько веков оказалось возможным выделить какие-либо тенденции в XVII в. "Внутри" же него, процессы были мало связаны друг с другом. Мощное эмпирическое движение в естествознании зародилось само по себе - оно отвечало какой-то внутренней потребности познания; философско-методологическое осознание этого "внутреннего движения развивалось также само собой, и то, что сегодня мы видим их тождественность - весомый аргумент в обосновании научности как таковой.

Первыми "концептуалистами" Нового времени принято считать Ф. Бэкона (1561 - 1626)и Р. Декарта (1596 - 1650). Р. Декарт несравненно более глубокий мыслитель - основатель философии Нового времени.В отличие от Ф. Бэкона, Р. Декарт ищет обоснование знания не столько в сфере его практической реализации, сколько в сфере самого знания. Поэтому в центре методологических размышлений("сомнений") Р. Декарта - мысль и сам Человек. Природа Р. Декарта - вечнодвижущееся чисто материальное образование, основными ее законами являются принципы сохранения количества движения, инерции и первоначальности прямолинейного движения. На основе этих принципов и методологически контролируемого построения механических моделей разрешимы все познавательные задачи, обращенные к Природе.

Р. Декарт провозгласилпримат математического описания мира, но дал лишь его качественную картину (хотя сегодня прямоугольные координаты мы называем декартовыми, а у Декарта они были косоугольными и произвольными). Отличительной чертой Декарта-естественника была синкретичность его механики (и оптики) с философией, поэтому все три положения его механики важны для понимания последующей философии естествознания.

Р. Декарт явился типичным представителем ятрофизики - направления в естествознании, рассматривавшее живую природу с позиций физики. Дальнейшее развитие это направление получило в работах итальянского анатома Дж. Борелли (1608-1679) - основоположника ятромеханики, которое в последствии выросло в биомеханику.

С позицийятрофизики и ятромеханики живой организм подобен машине, в которой все процессы можно объяснить при помощи математики и механики. Подобно ятрофизике широкое развитие получила и ятрохимия - направление, представляющее все процессы, совершающиеся в организме – химическими.

6.7. Контрольные вопросы:

1. Как шел процесс зарождения капиталистических отношений в промышленности в Европе?

2. Какие мануфактуры существовали в России?

3. Как возникли мануфактуры?

4. Какие орудия труда появились в период мануфактурного производства?

5. Как добывались полезные ископаемые в период Нового времени?

6. Какое топливо использовалось в металлургии?

7. Нововведения в артиллерии в XVII в.

8. Организация текстильного производства в Европе в Новый период.

9. Почему часы и мельница явились основой для создания машин?

10. Какие периоды прошла научная революция в XVII в.

11. Роль учений Н. Коперника, Г. Галилея, И. Кеплера для механики.

12. Борьба между нептунизмом и плутонизмом в геологии.

13. Законы движения И. Ньютона.

14. Естественнонаучная идеология науки Нового времени.

15. Соединение науки Нового времени с производством.







Последнее изменение этой страницы: 2016-04-19; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.233.215.196 (0.008 с.)