Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Исследование минерализатов на наличие свинца

Поиск

СОЕДИНЕНИЯ СВИНЦА

Ионы свинца, поступившие в организм, соединяются с сульфгидрильными и другими функциональными группами ферментов и некоторых других жизненно важных белковых соединений. Соединения свинца тормозят синтез порфирина, вызывают нарушение функций центральной и периферической нервной системы. Около 90 % ионов свинца, поступивших в кровь, связываются эритроцитами.

Соединения свинца выделяются из организма главным образом с калом. Меньшие количества этих соединений выделяются с желчью, а следы — с мочой. Соединения свинца частично откладываются в костной ткани в виде трехзамещенного фосфата. Следует иметь в виду, что незначительные количества свинца содержатся в организме как нормальная составная часть клеток и тканей.

Исследование минерализатов на наличие свинца

Для обнаружения свинца в органах трупов, крови, моче и других объектах биологического происхождения используют осадок, который образуется в минерализатах после разрушения биологического материала смесью серной и азотной кислот.

После разрушения биологического материала смесью серной и азотной кислот свинец выпадает в минерализате в виде белого осадка сульфата свинца. Такого же цвета осадок сульфата бария образуется при отравлении соединениями бария. В результате соосаждения осадки сульфатов свинца и бария могут быть загрязнены ионами кальция, хрома, железа и др. При наличии хрома в осадке он имеет грязно-зеленую окраску. Для освобождения осадков сульфатов свинца и бария от примесей эти осадки промывают серной кислотой и водой, а затем осадок сульфата свинца растворяют в подкисленном растворе ацетата аммония:

Ход анализа на наличие свинца зависит от величины осадков, находящихся в минерализатах.

Исследование относительно больших осадков сульфата свинца

Реакция с иодидом калия. При наличии ионов свинца выпадает желтый осадок PbI 2, который растворяется при нагревании и вновь появляется в виде желтых пластинок при охлаждении раствора.

Реакция с хроматом калия. Образование оранжево-желтого осадка хромата бария указывает на наличие ионов свинца в растворе. Предел обнаружения: 2 мкг свинца в пробе.

Реакция с сероводородной водой. Появление черного осадка сульфида свинца (или мути) указывает на наличие ионов свинца в растворе. Предел обнаружения: 6 мкг свинца в пробе.

Реакция с серной кислотой. Появление белого осадка указывает на наличие ионов свинца в растворе. Предел обнаружения: 0,2 мг ионов свинца в пробе.

ТЕТРАЭТИЛСВИНЕЦ

ТЭС — прозрачная бесцветная жидкость с неприятным, раз­дражающим запахом (в ничтожно малых концентрациях имеет приятный фруктовый запах). Он почти нерастворим в воде, лег­ко растворяется в керосине, бензине, хлороформе.

Изолирование тетраэтилсвинца производится раз­личными методами в зависимости от характера объекта.

а) При исследовании внутренних органов трупа изолирование производят дистилляцией с водяным паром. Дистиллят в коли­честве 50—100 мл собирают в приемник, содержащий 30 мл на­сыщенного спиртового раствора йода; приемник соединяют с уловителем, содержащим также насыщенный спиртовой рас­твор йода.

После отгонки содержимое уловителя и дистиллят объединя­ют, покрывают часовым стеклом и оставляют на 30 минут при комнатной температуре, затем упаривают досуха в фарфоровой чашке на водяной бане. Остаток обрабатывают азотной кисло­той (1:2) и вновь упаривают на водяной бане. Кристаллический остаток растворяют в небольшом количестве дистиллированной воды и подвергают качественному и количественному исследова­нию на ион свинца по описанному выше методу. Для целей хи­мико-токсикологического анализа метод разработан А. Н. Кры­ловой.

Исследование на ТЭС следует производить немедленно по по­лучении объекта. Положительный результат получается при со­держании 0,3 мг ТЭС в 100 г исследуемого объекта.

В случае отрицательного результата при исследовании на ТЭС необходимо произвести анализ на продукты разложения тетраэтилсвинца — нелетучие соединения свинца, для чего содер­жимое колбы после отгонки ТЭС помещают в большую фарфо­ровую чашку и выпаривают на водяной бане. Остаток подверга­ют минерализации серной и азотной кислотами и исследуют, как описано выше. Положительный результат наблюдают еще при наличии 0,3 мг неорганического свинца в 100 г трупного мате­риала.

б) Изолирование из растительных объектов.
При исследовании продуктов животного происхождения (мясо, котлеты и т. п.) ТЭС изолируют по описанному выше способу. Если продукты представляют собой муку, крупу, хлеб и другие вещества растительного происхождения, изолирование ТЭС пред­
почтительнее производить извлечением органическим раствори­телем. При этом 50—100 г объекта заливают, например, хлоро­формом и оставляют при комнатной температуре на 2 часа в колбе с притертой пробкой. Хлороформную вытяжку отфильтровывают в стакан, на дно которого помещено около 1 г сухого
кристаллического йода. Периодически содержимое стакана пе­ремешивают вращательным движением с целью ускорения рас­творения йода. Объект на фильтре промывают 1—2 раза хлоро­формом, а промывную жидкость собирают в тот же стакан. Че­рез 15—30 минут содержимое стакана переносят в фарфоровую
чашку и выпаривают досуха на водяной бане. Сухой остаток
разрушают серной и азотной кислотами, удаляют окислы азота
и исследуют на РЬ2+.

При исследовании одежды на наличие ТЭС ее подвергают из­влечению органическим растворителем с дальнейшим переведе­нием ТЭС в неорганические соединения свинца, обнаружением и количественным определением его.

в) Изолирование из бензинов. Все способы изолирования ТЭС из бензина сводятся к разрушению молекулы тетраэтилсвинца и обнаружению и определению РЬ2+. В качестве при­мера приведем один из способов. Смешивают 20 мл исследуемо­
го бензина с 20 мл 4% спиртового раствора йода. Через некоторое время водную фазу выливают в фарфоровую чашку и выпаривают на водяной бане досуха. Полученный остаток исследуют на РЬ2+

Качественное обнаружение и количественное определение. После разрушения молекулы ТЭС обнаружение и определение РЬ2+ не представляет никаких особенностей. Пригодны все опи­санные выше реакции и методы.

Йодометрически удается определить до 1 мг ТЭС в исследуе­мой навеске (А. Н. Крылова).

СОЕДИНЕНИЯ БАРИЯ

Растворимые соединения бария, поступившие в организм через пищевой канал, всасываются в желудке и вызывают отравление.

Соединения бария выделяются из организма главным образом через кишки. Следы этих соединений выводятся через почки и частично откладываются в костях. Сведения о содержании бария как нормальной составной части клеток и тканей организма в литературе отсутствуют.

СОЕДИНЕНИЯ МАРГАНЦА

Соединения марганца относятся к числу сильных протоплаз-матических ядов. Они действуют на центральную нервную систему, вызывая в ней органические изменения, поражают почки, легкие, органы кровообращения и т. д. При использовании концентрированных растворов перманганата калия для полоскания горла может наступить отек слизистых оболочек рта и глотки.

Соединения марганца накапливаются в печени. Они выделяются из организма через пищевой канал и с мочой. При патолого-анатомическом вскрытии трупов лиц, умерших в результате отравления соединениями марганца, отмечаются ожоги слизистых оболочек в различных участках пищевого канала, напоминающие ожоги, вызванные едкими щелочами. Обнаруживаются дегенеративные изменения в некоторых паренхиматозных органах.

СОЕДИНЕНИЯ ХРОМА

При острых отравлениях соединениями хрома они накапливаются в печени, почках и эндокринных железах. Соединения хрома выводятся из организма в основном через почки. В связи с этим при отравлении указанными соединениями поражаются почки и слизистые оболочки мочевыводящих путей.

СОЕДИНЕНИЯ СЕРЕБРА

Соединения серебра, поступившие в желудок, всасываются в кровь в незначительных количествах. Часть этих соединений взаимодействует с соляной кислотой содержимого желудка и превращается в хлорид, нерастворимый в воде. Нитрат серебра действует на кожу и слизистые оболочки. В результате этого могут возникать «химические» ожоги. При поступлении в организм через дыхательные пути пыли, содержащей серебро или его соединения, возникает опасность поражения капилляров. Длительный прием соединений серебра внутрь может быть причиной аргирии (отложения серебра в тканях), при которой кожа приобретает серо-зеленую или коричневатую окраску.

Соединения серебра выводятся из организма главным образом через кишки.

СОЕДИНЕНИЯ МЕДИ

Всасывание соединений меди из желудка в кровь происходит медленно. Поскольку поступившие в желудок соли меди вызывают рвоту, они могут выделяться из желудка с рвотными массами. Поэтому в кровь из желудка поступают только незначительные количества меди. При поступлении соединений меди в желудок могут нарушаться его функции и появляться понос. После всасывания соединений меди в кровь они действуют на капилляры, вызывают гемолиз, поражение печени и почек. При введении концентрированных растворов солей меди в глаза в виде капель может развиваться конъюнктивит и наступать повреждение роговицы.

Ионы меди выводятся из организма главным образом через кишки и почки.

СОЕДИНЕНИЯ СУРЬМЫ

Поступившие в кровь соединения сурьмы действуют как «капиллярный яд». При отравлении органическими соединениями сурьмы нарушаются функции сердечной мышцы и печени.

При патологоанатомическом исследовании трупов лиц, отравленных соединениями сурьмы, отмечается гиперемия ткани легких, кровоизлияние в легких и в пищевом канале.

Сурьма выделяется из организма главным образом через почки. Поэтому при отравлении сурьмой может развиваться нефрит.

СОЕДИНЕНИЯ МЫШЬЯКА

Мышьяк способен кумулироваться в организме. При остром отравлении соединениями мышьяка они накапливаются в основном в паренхиматозных органах, а при хронических отравлениях — в костях и ороговевших тканях (покровы кожи, ногти, волосы и др.).

Мышьяк выводится из организма через почки с мочой, кишки и через некоторые железы. Выделение мышьяка из организма происходит медленно, чем и обусловлена возможность его кумуляции. В экскрементах мышьяк еще можно обнаружить через несколько недель, а в трупном материале — и через несколько лет после смерти.

СОЕДИНЕНИЯ ВИСМУТА

Ионы висмута, всосавшиеся в кровь, долгое время задерживаются в организме (в печени, почках, селезенке, легких и ткани мозга).

Висмут выводится из организма через почки, кишки, потовые железы и др. В результате накопления висмута в почках возможно их поражение. При выделении висмута из организма потовыми железами может быть зуд кожи и появление дерматозов.

Данные о наличии висмута как нормальной составной части клеток и тканей организма в литературе не приводятся.

СОЕДИНЕНИЯ КАДМИЯ

Всасывание соединений кадмия происходит через пищевой канал, а паров — через дыхательные пути. Растворимые соединения кадмия денатурируют белки, содержащиеся в стенках пищевого канала. Поступившие в кровь ионы кадмия соединяются с сульфгидрильными группами ферментов, нарушая их функции. Соединения кадмия накапливаются главным образом в печени и почках. Они могут вызывать жировое перерождение печени. Соединения кадмия выделяются из организма в основном через почки с мочой и стенками кишок. В ряде случаев при отравлении соединениями кадмия отмечается кишечное кровотечение.

СОЕДИНЕНИЯ ЦИНКА

Цинк и его соединения могут поступать в организм через пищевой канал, а также через органы дыхания в виде пыли, образующейся при добыче и переработке цинковых руд. Цинк может поступать в организм с вдыхаемым воздухом в виде паров, выделяющихся при выплавке цинка и получении сплавов. После поступления цинка в организм в виде пыли и паров образуются его соединения с белками, вызывающие приступы лихорадки, начинающейся с озноба (так называемая лихорадка литейщиков, или латунная лихорадка). При вдыхании пыли и паров цинка может появиться тошнота, рвота и мышечные боли. Описаны случаи отравлений пищей, приготовленной и сохраняемой в оцинкованной посуде, из продуктов, содержащих кислоты (богатые кислотами фрукты, томат и др.). Соединения цинка, поступившие в желудок, могут вызывать острое отравление, при котором наступает рвота, понос, судороги и т. д.

При отравлениях соединениями цинка они накапливаются в печени и поджелудочной железе.

СОЕДИНЕНИЯ РТУТИ

Пары металлической ртути и пыль, содержащая соединения этого металла, могут поступать в организм с вдыхаемым воздухом. При этом поражается центральная нервная система (в первую очередь кора головного мозга). Поступившая в организм металлическая ртуть и ее соединения связываются с сульфгидрильными группами ферментов и других жизненно важных белков. В результате этого нарушаются физиологические функции некоторых клеток и тканей организма. Соединения ртути, поступившие в организм через пищевой канал, поражают желудок, печень, почки, железы, через которые выделяется ртуть из организма. При этом ощущаются боли в пищеводе и желудке, появляется рвота и кровавый понос. В организме ртуть откладывается главным образом в печени и почках.

Ртуть медленно выводится из организма. Еще через две недели после острого отравления ртутью определенные количества ее можно обнаружить в отдельных тканях. Ртуть выводится из организма с мочой и калом, а также потовыми, слюнными и молочными железами.

Деструкция биологического материала. Ртуть в биологическом материале находится в связанном виде с сульфгидрильными и некоторыми другими функциональными группами белковых веществ. В процессе деструкции под влиянием сильных кислот при нагревании происходит разрыв прочных ковалентных связей между ртутью и сульфгидрильными или другими функциональными группами белковых веществ. В результате деструкции ртуть переходит в деструктат в виде ионов, которые можно обнаружить и определить с помощью соответствующих реакций и физико-химических методов. Таким образом, после деструкции биологического материала в деструктате в различных количествах находятся ионы ртути, белки, пептиды, аминокислоты, липиды и др.

Для ускорения деструкции к биологическому материалу прибавляют этиловый спирт, который является катализатором этого процесса. Для удаления из деструктата азотной, азотистой кислот и оксидов азота, образующихся в процессе деструкции, прибавляют мочевину.

Оксиды азота окисляются кислородом воздуха до оксида азота (IV), при взаимодействии которого с водой образуются азотная и азотистая кислоты, разлагающиеся мочевиной, как указано выше.

Методика деструкции органов трупов. 20 г измельченных органов трупов вносят в коническую колбу вместимостью 200 мл, в которую прибавляют 5 мл воды, 1 мл этилового спирта и 10 мл концентрированной азотной кислоты. Затем в колбу малыми порциями прибавляют 20 мл концентрированной серной кислоты с такой скоростью, чтобы оксиды азота не выделялись из колбы. После окончания прибавления концентрированной серной кислоты колбу оставляют на 5—10 мин при комнатной температуре (до прекращения выделения оксидов азота). Затем колбу устанавливают на кипящую водяную баню и нагревают в течение 10—20 мин. Если после нагревания колбы на кипящей водяной бане останутся неразрушенными кусочки биологического материала, то их осторожно растирают стеклянной палочкой о стенки колбы. При бурном протекании реакции с выделением оксидов азота в колбу прибавляют 30—50 мл горячей воды. Полученный горячий деструктат смешивают с двойным объемом кипящей воды и, не охлаждая жидкость, фильтруют ее через двойной увлажненный фильтр. Фильтр, через который фильтровали деструктат, и остатки жира на нем 2—3 раза промывают горячей водой. Промывные воды присоединяют к профильтрованному деструктату. Полученную при этом жидкость собирают в колбу, содержащую 20 мл насыщенного раствора мочевины, предназначенной для денитрации деструктата. Затем деструктат охлаждают, доводят водой до определенного объема и исследуют его на наличие ртути.

Деструкция органических веществ в моче. В моче здоровых людей ртуть и ее соединения отсутствуют. Однако при отравлении ртутью она может поражать почки и выделяться из организма с мочой в виде соединений с белками, аминокислотами и другими органическими веществами. Некоторое количество ртути может переходить в мочу и в виде ионов. Поэтому для обнаружения ртути в моче необходимо производить деструкцию белковых и других ртутьсодержащих соединений, переходящих в мочу.

А. Ф. Рубцов и А. Н. Крылова разработали два способа деструкции органических веществ в моче:

1. В колбу Къельдаля вместимостью 500 мл вносят пробу нефильтрованной суточной мочи объемом 200 мл. К моче прибавляют 35 мл концентрированной азотной кислоты, 2 мл этилового спирта и небольшими порциями в колбу вносят 25 мл концентрированной серной кислоты. Прибавляют эту кислоту так, чтобы не вспенивалась жидкость в колбе и не выделялись из нее оксиды азота. После окончания прибавления концентрированной серной кислоты содержимое колбы нагревают на кипящей водяной бане в течение 40 мин, затем прибавляют 20 мл насыщенного раствора мочевины. Если в деструктате имеется осадок, то его отфильтровывают, фильтр промывают горячей водой. Промывные воды присоединяют к деструктату, который подвергают исследованию на наличие ртути.

2. В колбу Къельдаля вместимостью 500 мл вносят 200 мл нефильтрованной суточной мочи, к которой небольшими порциями прибавляют 25 мл концентрированной серной кислоты, а затем малыми порциями прибавляют 7 г перманганата калия. Содержимое колбы оставляют на 40 мин при комнатной температуре периодически взбалтывая, затем в колбу небольшими порциями прибавляют насыщенный раствор щавелевой кислоты до исчезновения окраски перманганата калия. Полученный деструктат используют для обнаружения и количественного определения ртути.

Этот способ деструкции белковых веществ в моче более быстрый, чем описанный выше.

Деструкция органических веществ в крови. Для этой цели применяют методику, которая используется для деструкции органов трупов (см. выше), с той лишь разницей, что к пробе крови не прибавляют воду. На исследование берут по 50—100 мл крови.

МЕТИЛОВЫЙ СПИРТ

Метиловый спирт (метанол) — бесцветная жидкость (т. кип. 64,5 °С, плотность 0,79), смешивающаяся во всех соотношениях с водой и многими органическими растворителями.

Метиловый спирт может поступать в организм через пищевой канал, а также с вдыхаемым воздухом, содержащим пары этого спирта. В незначительных количествах метиловый спирт может проникать в организм и через кожу Смертельная доза принятого внутрь метилового спирта составляет 30—100 мл. Смерть наступает в результате остановки дыхания, отека головного мозга и легких, коллапса или уремии. Местное действие метилового спирта на слизистые оболочки проявляется сильнее, а наркотическое действие — слабее, чем у этилового спирта.

Одновременное поступление метилового и этилового спиртов в организм уменьшает токсичность метилового спирта. Это объясняется тем, что этиловый спирт уменьшает скорость окисления метилового спирта почти на 50 %, а следовательно, и уменьшает его токсичность.

Метаболизм. Метиловый спирт, поступивший в организм, распределяется между органами и тканями. Наибольшее количество его накапливается в печени, а затем в почках. Меньшие количества этого спирта накапливаются в мышцах, жире и головном мозгу. Метаболитом метилового спирта является формальдегид, который окисляется до муравьиной кислоты. Часть этой кислоты разлагается на оксид углерода (IV) и воду. Некоторое количество метилового спирта, не подвергшегося метаболизму, выделяется с выдыхаемым воздухом. Он может выделяться с мочой в виде глюкуронида. Однако с мочой могут выделяться и небольшие количества неизмененного метилового спирта. Метиловый спирт окисляется в организме медленнее, чем этиловый спирт.

ЭТИЛОВЫЙ СПИРТ

Этиловый спирт С2Н5ОН (этанол, этиловый алкоголь, винный спирт) — бесцветная, летучая жидкость с характерным запахом, жгучая на вкус (пл. 0,813—0,816, т. кип. 77—77,5 °С). Этиловый спирт горит синеватым пламенем, смешивается во всех соотношениях с водой, диэтиловым эфиром и многими другими органическими растворителями, перегоняется с водяным паром.

Этиловый спирт неравномерно распределяется в тканях и биологических жидкостях организма. Это зависит от количества воды в органе или биологической жидкости. Количественное содержание этилового спирта прямо пропорционально количеству воды и обратно пропорционально количеству жировой ткани в органе. В организме содержится около 65 % воды от общей массы тела. Из этого количества 75— 85 % воды содержится в цельной крови. Учитывая большой объем крови в организме, в ней накапливается значительно большее количество этилового спирта, чем в других органах и тканях. Поэтому определение этилового спирта в крови имеет большое значение для оценки количества этого спирта, поступившего в организм.

Метаболизм. Часть этилового спирта (2—10 %) выделяется из организма в неизмененном виде с мочой, выдыхаемым воздухом, потом, слюной, калом и т. д Остальное количество этого спирта подвергается метаболизму. Причем метаболизм этилового спирта может происходить несколькими путями. Определенное количество этилового спирта окисляется с образованием воды и оксида углерода (IV). Несколько большее количество этого спирта окисляется до уксусного альдегида, а затем до уксусной кислоты.

ИЗОАМИЛОВЫЙ СПИРТ

Изоамиловый спирт (СН 3) 2 —СН—СН 2 —СН 2 —ОН (2-метил-бутанол-4 или изобутилкарбинол) представляет собой оптически неактивную жидкость (т. кип. 132,1 °С, пл. 0,814 при 20 °С), имеющую неприятный запах.

Изоамиловый спирт (2-метилбутанол-4) является главной составной частью сивушных масел. В состав сивушных масел входят также оптически активный изоамиловый спирт СН 3 —СН 2 —СН(СН 3)—СН 2 —ОН (2-метилбутанол-1), изобутиловый спирт и нормальный пропиловый спирт. Кроме этих спиртов в сивушных маслах в незначительных количествах содержатся жирные кислоты, их эфиры и фурфурол. Наличием 2-метилбутанола-4 в сивушных маслах объясняется его резкий неприятный запах и высокая токсичность. Изоамиловый спирт (2-метилбутанол-4) является побочным продуктом спиртового брожения углеводов, содержащихся в свекле, картофеле, фруктах, зернах пшеницы, ржи, ячменя и других сельскохозяйственных культурах.

Изоамиловый спирт в 10—12 раз токсичнее, чем этиловый. Он действует на центральную нервную систему, обладает наркотическими свойствами.

Метаболизм. Часть дозы изоамилового спирта, поступившего в организм, превращается в альдегид изовалериановой кислоты, а затем в изовалериановую кислоту. Некоторое количество неизмененного изоамилового спирта и указанных выше метаболитов выделяются из организма с мочой и с выдыхаемым воздухом.

ЭТИЛЕНГЛИКОЛЬ

Этиленгликоль (НО—СН 2 —СН 2 —ОН) является одним из представителей двухатомных спиртов, имеющих токсикологическое значение. Это бесцветная маслянистая жидкость (т. кип. 197 °С) сладковатого вкуса. Этиленгликоль смешивается с водой во всех соотношениях, плохо растворяется в диэтиловом эфире, хорошо—в этиловом спирте. Этиленгликоль перегоняется с водяным паром.

Метаболизм. Метаболизм этиленгликоля является сложным. Основной путь метаболизма этого препарата состоит в том, что он окисляется до альдегида гликолевой кислоты НО—СН 2 —СНО, который дальше окисляется до гликолевой кислоты НО—СН 2 — СООН, разлагающейся на оксид углерода (IV) и муравьиную кислоту. Часть этиленгликоля в организме превращается в щавелевую кислоту, которая может быть причиной повреждения почек в результате отложения оксалатов в почечных канальцах. Оксид углерода (IV), как метаболит этиленгликоля, выделяется из организма с выдыхаемым воздухом. Остальные метаболиты и часть неизмененного этиленгликоля выделяется из организма с мочой.

Выделение этиленгликоля из биологического материала. Метод выделения этиленгликоля из объектов химико-токсикологического анализа предложен Н. Б. Лапкиной и В. А. Назаренко. Этот метод основан на использовании бензола как селективного переносчика этиленгликоля из объектов в дистиллят. Бензол совместно с парами этиленгликоля и небольшим количеством водяного пара переносится в дистиллят. Вода, которая перегоняется при этом, практически содержит весь этиленгликоль.

На исследование берут печень трупа, в которой после отравления содержится больше этиленгликоля, чем в других органах. При острых отравлениях этиленгликолем исследованию подвергают и желудок с содержимым. К 10 г печени или содержимого желудка прибавляют 5 г кристаллической щавелевой кислоты, смесь растирают до получения тонкой кашицы, переносят в круглодонную колбу 1 вместимостью 100 мл и прибавляют 50 мл бензола. Колбу закрывают вертикально поставленным холодильником 3, снабженным приспособлением 2 для улавливания воды. Затем колбу устанавливают на водяную баню и нагревают. Пары бензола и увлекаемые им вода и этиленгликоль конденсируются в холодильнике и попадают в специальное приспособление. Поскольку в этом приспособлении (насадке) бензол (плотностью 0,879) находится сверху воды, он стекает в колбу. Вода и находящийся в ней этиленгликоль остаются в насадке. После окончания отгонки разбирают прибор и пипеткой из насадки отбирают необходимое для анализа количество жидкости.

Обнаружение этиленгликоля.

Реакция окисления этиленгликоля периодатом и обнаружение образовавшегося формальдегида. В результате указанной реакции образуется формальдегид, который можно обнаружить при помощи фуксинсернистой кислоты:

Окисление этиленгликоля азотной кислотой и обнаружение щавелевой кислоты. При многократном выпаривании этиленгликоля с азотной кислотой образуется щавелевая кислота, которая с солями кальция образует кристаллы оксалата кальция, имеющие характерную форму. Эти кристаллы в ряде случаев появляются через 2—3 суток.

Реакция с сульфатом меди. От прибавления сульфата меди и щелочи к этиленгликолю образуется соединение, имеющее синюю окраску:

ХЛОРОФОРМ

Хлороформ (трихлорметан) СНCl 3 — бесцветная прозрачная летучая жидкость с характерным запахом. Смешивается с диэтиловым эфиром, этиловым спиртом и другими органическими растворителями, слабо растворяется в воде (см. табл. 1). Под влиянием света, воздуха, влаги и температуры хлороформ постепенно разлагается. При этом могут образовываться фосген, муравьиная и соляная кислоты.

Метаболизм. Хлороформ, поступивший в организм, быстро исчезает из крови. Через 15—20 мин с выдыхаемым воздухом в неизмененном виде выделяется 30—50 % хлороформа. В течение часа через легкие выделяется до 90 % хлороформа, поступившего в организм. Однако еще и через 8 ч в крови можно обнаружить незначительные количества хлороформа. Часть хлороформа подвергается биотрансформации. При этом в качестве метаболитов образуются оксид углерода (IV) и хлороводород. При химико-токсикологических исследованиях основными объектами анализа на наличие хлороформа в организме являются выдыхаемый воздух, богатые жирами ткани трупов и печень.

Обнаружение хлороформа

Реакция отщепления хлора. При нагревании хлороформа со спиртовым раствором щелочи происходит отщепление атомов хлора, которые можно обнаружить при помощи реакции с нитратом серебра:

Перед выполнением этой реакции необходимо убедиться в том, что в исследуемом растворе (дистилляте) и в реактивах отсутствуют ионы хлора.

Реакция Фудживара. Хлороформ и ряд других галогенсодержащих соединений можно обнаружить при помощи реакции Фудживара, которая основана на взаимодействии этих веществ с пиридином в присутствии щелочи. При взаимодействии хлороформа с пиридином и щелочью образуется полиметиновый краситель. При этой реакции вначале образуется соль пиридиния:

Под влиянием щелочи соль пиридиния превращается в производное глутаконового альдегида (I), при гидролизе которого образуется глутаконовый альдегид (II), имеющий окраску:

Описано два варианта реакции Фудживара. При использовании первого варианта наблюдают окраску образовавшегося глутаконового альдегида. При втором варианте этой реакции к образовавшемуся глутаконовому альдегиду прибавляют ароматический амин или другое соединение, содержащее подвижный атом водорода, а затем наблюдают окраску.

Реакция с резорцином. При нагревании хлороформа с резорцином в присутствии щелочи появляется розовая или малиново-красная окраска.

Реакция образования изонитрила. При нагревании хлороформа с первичными аминами и щелочью образуется изонитрил (карбиламин), имеющий неприятный запах:

Реакция с реактивом Фелинга. При взаимодействии хлорофор ма со щелочью образуется соль муравьиной (формиатной) кислоты:

Реактив Фелинга, содержащий внутрикомплексное соединение K 2 Na 2 [Cu(С 4 Н 3 O 6) 2 ], которое образуется при взаимодействии ионов меди (II) с сегнетовой солью, при нагревании окисляет муравьиную кислоту и ее соли. В результате реакции выпадает красного цвета осадок оксида меди (I):

ХЛОРАЛГИДРАТ

Хлоралгидрат или

— бесцветные кристаллы или мелкокристаллический порошок с характерным острым запахом и слегка горьковатый, растворяется в воде, этиловом спирте, диэтиловом эфире и хлороформе. Хлоралгидрат гигроскопичен и медленно улетучивается на воздухе.

Метаболизм. Хлоралгидрат быстро всасывается в кровь из пищевого канала. В организме он подвергается метаболизму. Метаболитами хлоралгидрата являются трихлорэтанол и трихлоруксусная кислота. Считают, что токсическое действие хлоралгидрата на организм объясняется образованием трихлорэтанола. Трихлоруксусная кислота в организме может образовываться двумя путями: непосредственно из хлоралгидрата и из трихлорэтанола. Трихлорэтанол из организма выделяется с мочой в виде глюкуронида. После смерти, наступившей в результате отравления хлоралгидратом, определенное количество его в неизмененном виде можно обнаружить в печени и желудке.

Обнаружение хлоралгидрата

Хлоралгидрат дает все реакции, которые в химико-токсикологическом анализе применяются для обнаружения хлороформа. Это объясняется тем, что применяемые в химико-токсикологическом анализе реакции на хлороформ производятся в присутствии щелочи, под влиянием которой хлоралгидрат разлагается с выделением хлороформа:

Для отличия хлоралгидрата от хлороформа может быть использована реакция с реактивом Несслера. Эту реакцию дает хлоралгидрат, содержащий альдегидную группу. Не дает этой реакции хлороформ.

Реакция с реактивом Несслера. При взаимодействии хлоралгидрата с реактивом Несслера выделяется свободная ртуть:

ЧЕТЫРЕХХЛОРИСТЫЙ УГЛЕРОД

Четыреххлористый углерод ССl 4 — прозрачная жидкость со своеобразным запахом (т. кип. 75—77 °С). Он смешивается в любых соотношениях с ацетоном, бензолом, бензином, сероуглеродом и другими органическими растворителями. В воде при 20 °С растворяется около 0,01 % четыреххлористого углерода. Четыреххлористый углерод не огнеопасен, его пары в несколько раз тяжелее воздуха.

Четыреххлористый углерод поступает в организм при вдыхании его паров, а также может поступать через неповрежденную кожу и пищевой канал. Четыреххлористый углерод неравномерно распределяется в организме. Количество его в ткани, богатой жирами, в несколько раз больше, чем в крови. Содержание четыреххлористого углерода в печени и в костном мозгу значительно выше, чем в легких. В эритроцитах крови трупов содержится четыреххлористого углерода примерно в 2,5 раза больше, чем в плазме.

Метаболизм. Четыреххлористый углерод быстро выделяется из организма. Уже через 48 ч после поступления в организм его нельзя обнаружить в выдыхаемом воздухе. Его метаболитами являются хлороформ и оксид углерода (IV).

ДИХЛОРЭТАН

Известны два изомера дихлорэтана (С 2 Н 4 Сl 2): 1,1-дихлорэтан и 1,2-дихлорэтан.

1,1-Дихлорэтан (хлористый этилиден) СН 3 СНСl 2 — бесцветная жидкость (плотность 1,189 при 10 °С), кипящая при 58 °С. 1,2-Дихлорэтан (хлористый этилен) Сl—СН 2 —СН 2 —Сl — жидкость (плотность 1,252 при 20 °С), кипящая при 83,7 °С. В промышленности 1,2-дихлорэтан более широко используется, чем 1,1-дихлорэтан.

1,2-Дихлорэтан слабо растворяется в воде, хорошо растворяется в большинстве органических растворителей. Он стоек к действию кислот и щелочей. Воспламеняется с трудом. Технический 1,2-дихлорэтан содержит примесь трихлорэтилена С1—СН = СС1 2.

Выделение дихлорэтана из биологического материала. Выделение дихлорэтана из биологического материала производится путем перегонки с водяным паром. На исследование берут первые порции дистиллята. В тех случаях, когда имеются специальные указания провести исследование биологического материала на наличие 1,2-дихлорэтана, получают около 300 мл дистиллята, который подвергают повторной перегонке и собирают первые 200 мл дистиллята. Этот дистиллят дважды подвергают перегонке с дефлегматором. Последний дистиллят (объемом 10 мл), полученный при отгонке жидкости с дефлегматором, подвергают исследованию на наличие 1,2-дихлорэтана.

ФОРМАЛЬДЕГИД

Формальдегид (альдегид муравьиной кислоты)—газ, хорошо растворимый в воде, обладающий острым специфическим запахом. Водный раствор, содержащий 36,5—37,5 % формальдегида, называется формалином.

Формальдегид изолируют из биологического материала путем перегонки с водяным паром. Однако этим методом перегоняется только незначительная часть формальдегида. Считают, что формальдегид в водных растворах находится в виде гидрата (метиленгликоля), который трудно отгоняется с водяным паром:

НСНО + НОН ---> СН 2 (ОН) 2.

Формальдегид угнетает центральную нервную систему, в результате этого может произойти потеря сознания, появляются судороги. Под влиянием формальдегида развиваются дегенеративные поражения печени, почек, сердца и головного мозга. Формальдегид оказывает влияние на некоторые ферменты. 60—90 мл формалина являются смертельной дозой.

Метаболизм. Метаболитами формальдегида являются метиловый спирт и муравьиная кислота, которые, в свою очередь, подвергаются дальнейшему метаболизму.

Обнаружение формальдегида

Реакция с хромотроповой кислотой. Хромотроповая кислота (1,8-диоксинафталин-3,6-дисульфокислота) с формальдегидом в присутствии серной кислоты дает фиолетовую окраску.



Поделиться:


Познавательные статьи:




Последнее изменение этой страницы: 2016-04-19; просмотров: 3142; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.91.152 (0.011 с.)