Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Добавочные вещества (добавки)Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
При производстве ИСК кроме вяжущих веществ, заполнителей и наполнителей широкое применение находят добавочные вещества в смесях, именуемые добавками. На стадиях технологического процесса они облегчают выполнение операций, снижают количество затрачиваемой энергии, уменьшают расход дорогостоящих компонентов, снижают материалоемкость, способствуют обеспечению необходимых показателей свойств материала, благоприятствуют ускорению или замедлению процессов структурообразования и отвердевания. На стадии эксплуатации конструкций добавки, введенные ранее в ИСК, призваны упрочнить, стабилизировать структуры материала, максимально тормозить неизбежную деструкцию, возникающую и развивающуюся в материале под влиянием внешней среды и внутренних самопроизвольных явлений. Основное функциональное назначение добавок, и этим они отличаются от заполнителей и наполнителей, заключается в том, что они всегда достаточно активно взаимодействуют с одним или несколькими компонентами смеси в процессе формирования структуры вяжущей части или макроструктуры ИСК. В результате реакции возникают новые соединения, которых ранее не было в смеси, причем добавки или полностью расходуются, или утрачивают свои индивидуальные признаки. Понятно, что при избыточном количестве добавки могут частично остаться в смеси и в сформованном материале без каких-либо изменений, что не является желательным. Распространенными являются порошкообразные добавки, по внешнему виду, а иногда и по химическому составу сходные с наполнителями. В качестве тонкомолотых активных минеральных добавок их вводят в состав неорганических, вяжущих веществ с целью придания им требуемых свойств, например способности к твердению в водной среде при добавлении к воздушной извести, повышенной водостойкости и стойкости против коррозии при добавлении к портландцементу или стойкости к воздействию высоких температур с сохранением прочности при добавках, вводимых в портландцемента, глиноземистый и некоторые другие вяжущие при производстве жаростойких бетонов, и т. д. Кислотостойкость материала повышают добавки из порошкообразного кварца, андезита, базальта и др. К другим распространенным порошкообразным добавкам относятся: из природных — осадочные горные породы (трепел, диатомит, опоки, магнезит и др.) или породы вулканического происхождения (пуццоланы, пемзы, туф, диабаз и др.); из искусственных — доменные гранулированные шлаки, зола-унос, нефелиновый шлам (побочный продукт алюминиевого производства), помол шамотного кирпича, обожженной глины (порошкообразный керамзит, агло-порит) и др. Все эти твердые добавки образуют с вяжущим новые, как правило, более сложные соединения типа силикатов кальция, алюминатов кальция и др. Твердые добавки в смесях могут оставаться не только в состоянии нерастворимых минеральных порошков. Используют и такие твердые добавки, которые в смесях сравнительно легко образуют растворы или расплавы. Они относятся либо к катализаторам и ингибиторам (замедлителям), либо вступают в химические связи с компонентами смеси и создают новые фазы в процессе структурообразования. Их действие может привести также к преобразованию свойств поверхности компонентов, например к минерализации древесной дробленки и стружки путем экранирования поверхности пленкой нерастворимого вещества. Среди добавок этого действия — водорастворимые соли (средние и кислые), основания и другие электролиты и неэлектролиты. Широкое распространение имеют жидкие добавочные вещества (добавки) — гомогенные или гетерогенные, как, например, водные дисперсии полимеров, или легко переводимые в жидкое состояние в виде истинных и коллоидных растворов, эмульсий, мыльных пен и др., именуемых как поверхностно-активные вещества (ПАВ). В этих органических соединениях молекулы имеют углеводородный радикал и полярную группу, обращаемую при адсорбции к среде или твердой фазе, производя структурирующее воздействие в материале. Поверхностно-активные вещества как добавки разделяют в основном на гидрофобизирующие и гидрофилизирующие, что зависит от механизма их контактирования с вяжущими веществами и от конечного эффекта их взаимодействия — соответственно гидрофобизация (несмачиваемость водой) после воздействия первого и гид-рофшшзация — после воздействия второго. Эти добавки способствуют также повышению морозостойкости и долговечности, что является следствием их способности, особенно при гидрофобизирующих добавках, к воздухововлечению при приготовлении смеси. Образуются замкнутые воздушные пузырьки, которые предохраня ют разрушение материала при замерзании свободной воды, например, в бетоне с расширением льда. Вместе с тем практически не возникает водопроницания материала, так как количество воздушных пузырьков невелико (около 3—4%). Разновидностей ПАВ много, и они с большим эффектом используются в материалах для направленного структурообразования и обеспечения требуемых качественных показателей. Добавки, вводимые в цементно-бетонную смесь, разделяют по эффекту их действия на бетонную смесь и бетон. Пластифицирующие, стабилизирующие, водоудерживающие добавки регулируют реологические свойства. Ускорители и замедлители схватывания теста, противоморозные добавки регулируют процессы твердения. Воздухововлекающие, газообразующие, пенообразующие, уплотняющие регулируют пористость бетона. Специальные добавки придают, как отмечалось выше, бетонам кислотостойкость, жаростойкость и др. Ряд добавок носит комплексный характер и выполняет одновременно несколько функций в бетонных смесях и бетоне. ОСНОВНЫЕ РАЗНОВИДНОСТИ СТРОИТЕЛЬНЫХ КОНГЛОМЕРАТОВ
ОБЩИЕ СВЕДЕНИЯ О БЕТОНАХ
Бетоны на основе неорганических вяжущих веществ представляют собой искусственные строительные конгломераты, получаемые в результате твердения рациональной по составу, тщательно перемешанной и уплотненной бетонной смеси из вяжущего вещества, воды и заполнителей. Кроме основных компонентов в состав бетонной смеси могут вводиться дополнительные вещества специального назначения. Среди других ИСК бетоны относятся к самым массовым по применению в строительстве вследствие их высокой прочности, надежности и долговечности при работе в конструкциях зданий и сооружений. Кроме высокой прочности, у бетонов на основе неорганических вяжущих веществ имеется много и других достоинств: легкая формуемость бетонной смеси с получением практически любых наперед заданных форм и размеров изделий и конструкций, доступность высокой механизации технологических операций и т. п. Большая экономичность изделий из бетона состоит в том, что для их производства применяют свыше 80% объема местного сырья — песка, щебня, гравия, побочных продуктов промышленности в виде шлака, золы и др. По некоторым зарубежным данным, количество энергии, требующейся для производства бетонных материалов, является минимальным по сравнению с энергией (приведенной к единому эквиваленту), необходимой для изготовления стали, алю миния, стекла, кирпича, пластмасс. Для затворения порошкообразных вяжущих в тестообразное состояние и получения бетонной смеси используют обычную воду — питьевую из водопровода или речную, озерную и др. Расход воды также ниже, чем при производстве стали. После твердения тесто образует камень, например цементный камень (микроконгломерат), а уплотненная бетонная смесь—бетон (конгломерат). Часть объемов в бетоне, заполнителе и камне занимают поры и капилляры разного размера и в различном количестве. Для бетонов применяют почти все разновидности неорганических вяжущих, в соответствии с чем бетоны разделяются на цементные, гипсовые, силикатные, шлаковые, специальные (на фосфатных, магнезиальных и других вяжущих). Для них используют также все разновидности заполнителей, вследствие чего бетоны разделяют на плотные, пористые, специальные. При объединении вяжущих и заполнителей в принятых по составу количествах получают множество технических решений при производстве искусственных строительных конгломератов различного назначения. Если этих двух компонентов окажется недостаточно, вводят дополнительные вещества (добавки). Еще более сильным фактором, которым пользуются при получении бетонов с заданными свойствами, является технология с ее многообразными операциями (переделами), режимами (тепловыми, механическими и пр.) и характеристиками оборудования и энергетики. К одному из показателей заданных свойств относится средняя плотность бетона. Величина средней плотности бетона зависит от разновидности заполнителя, а отчасти обусловлена пористостью цементного камня. Особо тяжелые бетоны со средней плотностью свыше 2500 кг/м3 получают при заполнителях в виде железной руды, барита, чугунного скрапа, обрезков стали или чугуна и т. п. Тяжелые — средней плотностью 2200—2500 кг/м3 — получают, применяя в них в качестве заполнителя щебень из плотных горных пород — гранита, диабаза, песчаника и др.; в состав облегченных бетонов со средней плотностью 1800—2200 кг/м3 вводят керамдор, шунгузит, шлаки. В легких бетонах со средней плотностью 500—2000 кг/м3 используют легкий заполнитель, природный или искусственный, в том числе пемзу, туфы, керамзит, аглопорит, ва-кулит и др.; нередко в них отсутствует песчаная фракция, вследствие чего возникают пустоты между щебнем, а сам бетон именуется крупнопористым легким бетоном. Особо легкие бетоны (теплоизоляционные) со средней плотностью менее 500 кг/м3 характеризуются наличием в них воздушных или газовых ячеек. Они именуются ячеистыми бетонами. При наибольшей крупности заполнителя до 10 мм — бетоны мелкозернистые, более 10 мм — крупнозернистые. При применении песка (крупность зерен до 5 мм) получают песчаные бетоны, также весьма необходимые в строительстве[34]. В зависимости от производственного назначения бетоны разделяют на конструкционные, предназначенные для изготовления бетонных и железобетонных внутренних и наружных конструкций промышленных и гражданских зданий и инженерных сооружений (колонны, балки, плиты и др.); гидротехнические — для строительства плотин, шлюзов, облицовки каналов и других гидротехнических сооружений; дорожные — для строительства дорожных и аэродромных оснований и покрытий; специальные — при устройстве жароупорных покрытий, изготовления кислотоупорных изделий и т. п. Каждой разновидности бетона присущи свои особенности: гидротехнический должен быть предельно плотным, водонепроницаемым, морозостойким, стойким против коррозии, тогда как бетон для жилищного строительства, тем более ограждающих конструкций (стен, перекрытий), должен быть малотеплопроводным, поддерживать и сохранять хорошую звукоизоляцию и пр., а бетоны дорожные должны быть не только морозостойкими, но и устойчивыми к динамическим воздействиям транспортных нагрузок, к истираемости и износу под колесами автомобиля в сложных климатических условиях. В соответствии с ГОСТ 25192—82 основным показателем качества бетонов является предел прочности при одноосном сжатии образцов-кубов с ребром 15 см с разделением их на классы В или предел прочности при сжатии цилиндрических образцов размером 15x30 см с разделением бетонов на классы С. Эти показатели качества обоих классов принимаются по стандарту с гарантированной обеспеченностью. Марка бетона нормируется по среднему значению показателя прочности на сжатие, тогда как класс бетона нормируется с гарантированной обеспеченностью прочности. Важное значение в классификации по прочности и другим показателям качества отводится определению показателя однородности бетона. Всего предусмотрено классов по прочности на сжатие при испытании кубов 15x15x15 см — 19 (от В1 до В60), при испытании цилиндров 15x30 см — 19 (от С0,8 до С55); все значения прочности выражаются в МПа. Марки бетонов выражаются в кгс/см2: от 15 (для ячеистых бетонов) до 600 и более (для тяжелых бетонов). Как отмечалось выше, основное деление принято в настоящее время по классам, но допускаются и марки бетонов. Существенным недостатком бетона различных классов и различной плотности является невысокая сопротивляемость растягивающим (изгибающим) напряжениям. Она в 12—15 раз ниже прочности бетона при сжатии. ТЯЖЕЛЫЕ (ОБЫЧНЫЕ) БЕТОНЫ Исходные материалы. При выборе разновидности цемента учитывают характер конструкции и рекомендации нормативных документов (ГОСТа, СНиПа). Так, например, при производстве железобетонных конструкций промышленных зданий и многих инженерных сооружений, работающих в условиях воздушно-сухой среды, применяют портландцемента с повышенным содержанием алита. Если эти конструкции относятся к массивным, то более предпочтительны цементы с меньшим содержанием алита, которые меньше выделяют теплоты при реакциях твердения и, следовательно, в меньшей мере конструкции подвержены тепловым неравномерным напряжениям. Если конструкция работает в условиях воздействия морской или другой минерализованной воды, тогда выбирают ма-лоалюминатные сульфатостойкие портландцементы и шлакопорт-ландцементы. Гидротехнические сооружения проектируют и строят с применением сульфатостойких портландцементов с пластифицирующими и гидрофобными добавочными веществами. Аналогичным образом учитывают условия при выборе цемента для других видов бетона. Кроме выбора разновидности вяжущего обосновывают также выбор его марки, исходя из требуемой прочности бетона в конструкциях и минимального расхода вяжущего как наиболее дорогостоящего компонента бетона, избыток которого увеличивает величину усадочных деформаций, а потому и снижает трещиностойкость бетона. Обычно исходят из соотношения, чтобы марка по прочности цемента превышала на 10—40% марку бетона, а при низких марках бетона (110—300) превышение марки цемента составляет 100—200%. Но такие соотношения являются приблизительными, так как определение марок цемента и бетона по стандартам производится при различных условиях подготовки соответствующих смесей и при несходных структурах испытываемых материалов. Именно поэтому часто фактически прочность бетона получается на одну-две марки выше марки принятого цемента. Чтобы избежать случайности, следует при выборе цемента и расчетах исходить не из марки, а реальной активности (R*) при оптимальной структуре, в теории ИСК именуемой расчетной активностью. Она соответствует прочности цементного камня оптимальной структуры, полученной при испытании образцов, изготовленных при технологических параметрах и режимах, характерных для принятого или предполагаемого производства бетона и изготовления бетонных изделий. При проектировании состава бетона общим методом (см. 3.4) можно достаточно точно обусловить выбор расчетной активности цемента с учетом реальной технологии, реальных заполнителей и возможных добавок, в частности, пользуясь формулой (9.3). Строгие требования предъявляются к качеству воды, используемой при затворении бетонной смеси, а также для промывки заполнителей и увлажнения бетона при его твердении в сухих условиях. Рекомендуется применять питьевую воду; не допускаются болотные и сточные воды. Ограничивается содержание растворенных в воде солей, органических веществ, вовсе не допускаются примеси нефтепродуктов, проверяется водородный показатель рН, который не должен быть ниже 4,0 и выше 12,5. Для тяжелых бетонов предусмотрены требования к качеству заполнителей. Пески используют природные или получаемые дроблением плотных морозостойких горных пород с размером зерен не крупнее 5 мм. Важно обеспечить повышенную плотность зернового состава (по кривым плотных смесей) при модуле крупности не ниже 2,0. Ограничивается содержание пылевато-глинистых и других вредных примесей, о чем указывалось выше при описании заполнителей. На стадии проектирования состава бетона устанавливают целесообразный зерновой состав крупного заполнителя с наименьшим объемом пустот и наибольшей крупностью зерен при общих требованиях, указанных выше в отношении качества заполнителей[35]. Широко используют в технологии бетона пластифицирующие, воздухововлекающие и противоморозные добавки. Определение состава бетона. Одной из основных технологических задач является проектирование состава бетонной смеси. Разработан ряд методов проектирования состава, имеются официальные руководства, облегчающие решение этой задачи. Каждый раз необходимо выбирать тот метод проектирования (или подбора), который при принятой технологии способен обеспечить получение наиболее достоверного состава и оптимальной структуры бетона. Тогда формируется качество бетона, при котором имеется не только комплекс заданных, но и экстремальных показателей свойств, что соответствует закону створа. При всех методах на начальной стадии производится обоснованный выбор исходных материалов, чему способствуют табличные данные и вспомогательные графики, помещаемые в соответствующие руководства по подбору составов. В них выбор исходных материалов обусловлен проектной маркой (классом) бетона, разновидностью конструкций и эксплуатационными условиями с учетом не только прочности, но и морозостойкости, водонепроницаемости и других свойств. На втором этапе всех методов проектирования с помощью расчетов и опытов в лаборатории определяют количественные соотношения применяемых исходных материалов. Важно найти наиболее достоверные и закономерные способы определения таких соотношений с гарантией получения бетона не только необходимого качества по показателям свойств, но и оптимальной структуры. На третьем этапе в методах обычно предусмотрен выпуск пробного замеса бетонной смеси и более полная техническая характеристика качества этой смеси с возможным корректированием (уточнением) проектного состава. Изложенный в теории ИСК общий метод проектирования состава и оптимальной структуры в полной мере, естественно, относится к тяжелому и другим видам цементных бетонов. Принятое в общем методе отношение с/ф становится водоцементным (В/Ц) или водо-твердым при более сложном вяжущем веществе. Ниже изложен общий метод применительно к тяжелому плотному цементному бетону, но вначале следует уточнить общие закономерности из теории ИСК, на которые опирается этот метод. Среди законов видное место занимает закон створа (см. рис. 3.13), а в отношении механических свойств действует закон прочности оптимальных структур: произведение прочности бетона на степенную функцию фазового отношения (В/Ц) есть величина постоянная. Такой постоянной величиной служит аналогичное произведение прочности цементного камня на его водоцементное отношение при оптимальной структуре, возведенное в ту же степень, т. е. R*∙ (В/Ц*) n. Прочность R* цементного камня оптимальной структуры находится опытным путем при испытании образцов, хотя возможен и расчетный метод по формуле Фере: R=K[c/(c+e+a)]2, где K — константа; с, е, а — абсолютные объемы соответственно цемента, воды и воздуха в смеси. Как отмечал А.В. Волженский [8], было бы более целесообразно в формуле принять абсолютный объем новообразований цемента с учетом объема гелевых пор (Т. Пауэре. М., 1955). Показатель степени n в обоих случаях отражает влияние заполняющих компонентов и общую степень дефектности структуры бетона. Из закона прочности оптимальных структур и общей формулы (3.1) следует и общая формула прочности бетонов: (9.3) где Rб — прочность цементного бетона оптимальной структуры, выраженная любой ее характеристикой (предел прочности при сжатии, предел прочности при растяжении центральном или изгибе и т. п.); Rц* —прочность цементного камня оптимальной структуры, выраженная той же характеристикой, которая была принята для оценки прочности цементного бетона (и в том же возрасте); x — отношение фактической величины В/Ц бетона к В*/Ц цементного камня оптимальной структуры; оно равно отношению усредненных толщин (δ; δ*) пленок водной среды в свежеизготовленных материалах, т. е. x = В/Ц / В*/Ц = δ/δ*; n — показатель степени, отражающий влияние качества заполняющих материалов, дефектов структуры на прочность бетона; R* — экстремум в зависимости R = f (В/Ц), определяется опытным путем. Для исходных материалов, применяемых в цементном бетоне, и принятой технологии изготовления бетона с ее конкретными параметрами и режимами все члены формулы (9.3) имеют вполне определенный физический смысл. Из формулы следует, что повышения прочности бетона можно достигнуть, во-первых, путем всемерного увеличения RЦ* — введением химических добавок типа катализаторов или поверхностно-активных веществ, увеличения содержания кристаллической фазы на стадии твердения, дополнительным помолом, переходом на более высокие марки вяжущего и др. Из формулы (9.3) следует также, что для той же цели требуется уменьшать значение реального В/Ц и показателя степени п. Первое достигается с помощью пластифицирующих и суперпластифицирующих добавок, интенсификацией перемешивания смеси или другими мерами, снижающими толщину пленок водной среды на твердых частицах цемента или другого вяжущего; второе достигается фракционированием и промывкой заполнителя, составлением плотных смесей, применением кубовидного крупного заполнителя, активированием поверхности зерен и т. п. Большой резерв повышения прочности заключается в оптимизации технологических переделов, особенно режимов уплотнения при формовании и тепловых режимов при обработке отформованных изделий и конструкций. Формула (9.3) графически выражается гиперболической кривой в прямоугольной системе координат (R, В/Ц). Понятно, что этот график (рис. 9.7) аналогичен графической зависимости для любых ИСК (см. рис. 3.15, б). Однако на рис. 3.15, б отсутствует третья плоскость и соответственно ось аппликата (В+Ц) или (П+Щ), показанная на рис. 3.8 в виде (с+ф) и на рис. 3.15, а.
Рис. 9.7. Гиперболические кривые прочности бетонов оптимальной структуры; интенсивность спада прочности зависит от заполнителя: I — прочный известняк; II — гранитный щебень; III — керамзитовый гравий; IV — природный гравий (необработанный)
На плоскости R(В+Ц) ей соответствует формула прочности бетона оптимальной структуры: (9.4) Ее можно также выразить не процентах, а в долях единицы. Объединением формул (9.3) и (9.4) получена формула (9.5) в полном виде: (9.5) В ней нашли отражение все основные факторы, влияющие на величину прочности при воздействии на бетон практически любых напряжений (сжатия, растяжения, сдвига и др.), а именно: содержание вяжущего вещества (В+Ц), а следовательно, и заполняющей части П+Щ =100 — (В+Ц),% по массе; водоцементное отношение В/Ц; качество (расчетная прочность) вяжущего вещества оптимальной структуры R*; пористость k, %; качество заполнителя по отношению к принятому вяжущему веществу и (В+Ц) (степенной показатель n); жесткость бетона или количество заполнителя, а следовательно и (В+Ц) (показатель т); технологические параметры и режимы; эффективность добавочных веществ (добавок), отражающаяся на значениях В*/Ц и R*. Отсюда следует, что на технологической стадии безусловно возможно и необходимо регулировать и управлять числовым значением прочности и других свойств, но при непременной оптимизации структуры, соответствующей реальной технологии бетона. Только при ней действуют общие и объективные законы ИСК. Здесь необходимо снова вернуться к формуле (3.13), которая применительно к бетонам выглядит так: (9.6) где М = В + Ц — цементное тесто в долях единицы (по массе). Из формулы по-прежнему видно, что важно всемерно увеличивать расчетную величину активности матричного (вяжущего) вещества с соответственным уменьшением значения М, что после вычисления требуемого водоцементного отношения по формуле (9.6) адекватно уменьшению расхода цемента в бетоне (в кг/м3) до рационального минимума. Последний обычно обусловлен высокой плотностью и морозостойкостью бетона. При оптимальных структурах все эти параметры качества бетона находятся в теснейшей взаимосвязи. После уточнения формул прочности ИСК применительно к бетону целесообразно изложить последовательность проектирования состава тяжелого цементного бетона, в том числе с использованием компьютерной программы. 1. Определение расчетной активности цементного камня R* как матричной части бетона и минимального значения фазового отношения B*/Ц, обеспечивающего, при принятых технологических условиях, оптимальную структуру. Для этого из цементного теста с 3—4 различными В/Ц, отличающимися между собой на величину 0,02—0,03, изготовляют образцы-кубики размером 10x10x10 см путем уплотнения их способом, принятым в технологии производства проектируемого изделия[36]. В качестве исходного может быть принято В/Ц, соответствующее нормальной густоте цементного теста. После графического построения функции R = f (В/Ц) находят и уточняют искомое значение В*/Ц при наибольшей прочности цементного камня R*. 2. Определение состава плотной смеси песка (П) и щебня (Щ). Сосуд объемом 2 л заполняют мокрым щебнем и уплотняют способом, принятым в технологии. После установления стабильного уровня щебня сосуд взвешивают, определяя фактическую массу щебня. Затем в сосуд постепенно добавляют заранее взвешенный и смоченный водой песок, который заполняет пустоты между зернами щебня при непрерывной вибрации. После полного заполнения пустот песком определяют массу сосуда с щебнем и песком, находящимся в пустотах крупного заполнителя, тем самым устанавливая оптимальное соотношение по массе. Полнота заполнения пустот щебня песком возрастает при применении мокрых материалов и определяется по максимальной массе смеси (см. рис. 3.14). 3. Определение оптимального количества исходных материалов в бетонной смеси. С этой целью выполняют две последовательно чередующиеся операции: вспомогательную и основную. Вспомогательная операция является экспериментальной, необходимой для определения показателей степени n и m, используемых в формулах прочности и составов. По лабораторным данным строят кривую оптимальных структур (см. рис. 3.15) при произвольно выбранном значении (В/Ц)A и находят в точке А величину RA на кривой ДВЕ, а также значение (В/Ц)B в точке В. Прочность RA имеется и на кривой KL, которой к началу экспериментов хотя еще и нет, но о ее вероятном существовании, как и кривой оптимальных структур из теории ИСК, известно. И тогда полученных данных RA, (В+Ц)B, (В/Ц)A достаточно, чтобы определить значения показателей степени лит согласно вышеприведенным формулам, поскольку другие требуемые значения RЦ* и В*/Ц ранее были определены (на первом или втором этапах проектирования). Важно помнить, что величина mx — переменная и при новых В/Ц или R требует уточнения. Основная операция второго этапа проектирования оптимального состава бетона (как и всех других ИСК) является расчетной, причем сначала рассчитывают расход материалов (Ц, В, П, Щ) в % по массе на 1 тонну смеси, а затем пересчитывают в % по массе на 1 м3 бетонной смеси или 1 м3 бетона, например в абсолютно плотном теле. Последовательность (алгоритм) расчета Искомое водоцементное отношение: Искомый расход цементного теста: где показатель степени mx отличается от ранее полученного значения m, так как определяется при новом значении (В/Ц)иск, а не при прежнем (В/Ц)А, а именно: Количество цемента на 1 т смеси: Количество воды на 1 т смеси Количество песка и щебня определяют из условия: при ранее найденном значении П/Щ, а именно: — количество песка, — количество щебня[37]. Пересчет расхода материалов на 1 м3 бетонной смеси (без учета воздушных пор) производится в следующей последовательности. Определяем абсолютные объемы всех материалов (при условии, что известны истинные плотности ρц, ρв, ρп, ρщ, взятые в количествах для образования 1 т смеси): Пишем соотношение: если сумма соответствует 1000 кг, а 1000 л соответствует x кг, то И тогда расход материалов на 1 м3 бетонной смеси: цемента Ц ∙ х кг; воды В ∙ х кг; песка П ∙ х, кг; щебня Щ ∙ х кг. Контрольная проверка на плотность: л[38]. На третьем этапе проектирования рассчитывают расход материала при производственном составе, т. е. с учетом влажности песка и щебня; изготовляют контрольный замес (лучше в производственных условиях, применительно к которым были приняты технологические параметры и режимы формования и хранения) и образцы с оценкой свойств бетона в требуемом (обычно в 28-дневном) возрасте. Последнее производят с учетом известного логарифмического закона. На этом этапе завершается проектирование[39]; состав передается заводу. Приведенный выше метод расчета состава бетона оптимальной структуры легко и быстро выполняется, если воспользоваться одной из компьютерных программ, а именно Microsoft EXCEL, таблица которой состоит из бесчисленного количества строк (1, 2, 3...) и колонок (А, В, С, D...). Разместив в колонке «А» наименования показателей свойств, а в колонке «В» соответствующие показатели этих свойств и формулы, необходимые для расчета, можно составить программу, удобную для расчета многих составов бетона с оптимальной структурой (табл. 9.6). Числовой пример — в столбце С. Таблица 9.6. Последовательность расчета состава бетона оптимальной структуры с использованием Microsoft EXCEL
Компьютерный метод расчета обладает большой наглядностью. Применение его позволяет после внесения в таблицу расчетных формул: мгновенно получить результаты с любой заданной точностью; исключить ошибки, которые довольно часто возникают при работе с калькулятором; одновременно выполнять расчеты нескольких составов бетона при изменении свойств исходных материалов; наблюдать за влиянием отдельных факторов на результаты расчета и анализировать их. В настоящее время пока еще распространен подбор состава тяжелого бетона по методу «абсолютных объемов», разработанному Б.Г. Скрамтаевым и его научной школой. На первом этапе принимают исходные данные в отношении проектного класса бетона по прочности и другим свойствам. Для обоснования данных используют технические документы — проект здания или сооружения, проект бетонных элементов, проект организации работ, СНиП и другую проектную и нормативную документацию. Существенной характеристикой бетонной смеси (в зависимости от проектных и производственных условий) принимается подвижность, выражаемая в сантиметрах, или жесткость, выражаемая в секундах, и определяемые по ГОСТ 10181—81. Производится выбор заполнителей, возможных фракций при их разделении (классификации), а также размера наибольшего зерна (щебня или гравия) в зависимости от вида конструкции и способа укладки бетонной смеси. Обосновываются вид и марка цемента, его минимально допустимое количество в зависимости от условий работы конструкции и подвижности (жесткости) бетонной смеси. Обусловливается рекомендуемый расход воды в зависимости от подвижности бетонной смеси, вида и крупности заполнителя, а именно: чем меньше жесткость (выше пластичность) смеси и мельче наиболее крупный размер щебня (гравия), тем больший расход воды рекомендуется принимать в бетонной смеси, выражаемый в л/м3. На втором этапе определяют состав бетона расчетно-экспери-ментальным способом в такой последовательности: а) определяют водоцементное отношение (В/Ц) по данным предварительных опытов, которые помогают установить графическую зависимость прочности бетона от В/Ц при данной активности цемента и применении принятых местных заполнителей (табл. 9.7). Чаще, однако, пользуются формулой, которая следует из формулы прочности Боло-мея—Скрамтаева: при В/Ц > 0,4 (9,7) при В/Ц < 0,4 (9,7) Таблица 9.7. Значения коэффициентов А и A1
б) определяют расход воды (В) по требуемой подвижности бетонной смеси на основании результатов предварительных испытаний или по таблице, но с обязательным последующим корректированием применительно к исходным материалам (рис. 9.8);
Рис. 9.8. График водопотребности бетонных смесей жестких (а) и пластичных (б), приготовленных с применением портландцемента, песка средней крупности и гравия наибольшей крупности: 1 — 80 мм; 2 — 40 мм; 3 — 20 мм; 4 — 10 мм (при использовании вместо гравия щебня расход воды увеличивают на 10 л. При использовании пуццоланового портландцемента расход воды увеличивают на 15—20 л. При применении мелкого песка расход воды увеличивают на 10—20 л)
в) находят расход цемента (Ц): Ц = В:В/Ц. Может оказаться, что полученная величина расхода цемента на 1 м3 бетона ниже допустимого нормами минимума и принятого по таблицам на первом этапе подбора. Тогда величину Ц увеличивают до требуемой нормы с соответствующим увеличением количества воды В, с тем чтобы неизменным оставалось расчетное водоцементное отношение. Следует отмети
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 445; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.145.168 (0.024 с.) |