Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Поликонденсационные полимеры (реактопласты)Содержание книги
Поиск на нашем сайте
Поликонденсационные полимеры (реактопласты) получают в процессе реакции поликонденсации. При поликонденсации высокомолекулярное соединение образуется в результате последовательного взаимодействия молекул, содержащих две или несколько функциональных групп, способных вступить в реакцию (H2—OH2; Cl=NH2; СООН и др.). Она протекает обычно при нагревании или под действием катализаторов. Кроме полимера выделяются побочные низкомолекулярные продукты (вода, хлористый водород, спирты и др.). Схему синтеза конденсационных полимеров можно представить на примере взаимодействия фенола и формальдегида. Фенол С6Н3ОН при нагревании в водных растворах кислот или щелочей вступает в реакцию с формальдегидом, растворенным в воде, т. е. формалином, по схеме Х(С6Н5ОН) +…+ Y(CH2O) фенол + формальдегид полимер + H2O При реакции поликонденсации в зависимости от состава исходных продуктов могут образовываться как линейные цепи макромолекул, придающие полимеру термопластичные свойства, так и цепи пространственного строения — термореактивные полимеры. Из полимеров, полученных поликондеисацией, в строительстве чаще всего используют фенолоформальдегидные, карбамидные, полиэфирные, эпоксидные, полиамидные и некоторые другие полимеры. Фенолоформальдегидные полимеры получаются путем поликонденсации фенола с формальдегидом. Фенол С6H5ОН представляет собой бесцветные кристаллы игольчатого типа с характерным сильным запахом. Он токсичен, вдыхание его приводит к отравлению, а попадание на кожу вызывает ожоги. Формальдегид — газ с резким удушливым запахом, 40%-ный раствор его в воде называют формалином (CH2О). В зависимости от соотношения исходных продуктов поликонденсации, характера катализаторов получают различнее виды фенолоформальдегидных полимеров. При избытке фенола и конденсации в кислой среде получают новолачные (термопластичные) полимеры с линейным строением молекул. При избытке формальдегида и конденсации в щелочной среде образуются резольные (термореактивные) полимеры с сетчатым (трехмерным) строением молекул. В процессе поликонденсации резольных полимеров можно выделить три основные стадии: А — резолы, В — резистолы и С — резиты. Полимер в стадии А растворяется в спирте, ацетоне и других органических растворителях и с большей или меньшей скоростью в зависимости от температуры переходит в неплавкое и нерастворимое состояние (процесс отверждения). Полимер в стадии В теряет способность плавиться при нагревании, растворяться в органических растворителях и только набухает. Конечная стадия конденсации, стадия С, характерна неплавкостью и нерастворимостью полимера. Фенолоформальдегидные полимеры в твердом состоянии характеризуются высокой поверхностной твердостью и представляют собой хрупкие стеклообразные массы. Одним из достоинств феноло-формальдегидных полимеров является их способность хорошо совмещаться с наполнителями и давать материалы более прочные, теплостойкие и менее хрупкие, чем сами полимеры. Эти полимеры отличаются высокой адгезией к древесине, хлопчатобумажным тканям, бумаге. Фенолоформальдегидные полимеры и материалы на их основе обладают исключительно высокой химической стойкостью. Они используются для производства клеев, древесностружечных, древесноволокнистых и слоистых плит и пластиков, бумажносло-истых пластиков, водостойкой фанеры, сотопластов, минераловатных и стекловатных матов, спиртовых лаков. Карбамидные (мочевцноформалъдвгидные) полимеры — продукты реакции поликонденсации мочевины и ее производных (тиомочевины, меламина) с формальдегидом. Мочевина — карбамид [СО—(NH2)2] в чистом виде представляет собой кристаллы без цвета и запаха, хорошо растворимые в воде и хлороформе; получают нагреванием под давлением смеси аммиака и углекислого газа. В результате взаимодействия мочевины с формальдегидом в процессе поликонденсации могут быть получены термопластичные и термореактивные полимеры. По сравнению с фенолоформальдегидными полимерами стоимость их ниже. Они светостойки, но вместе с тем менее водостойки, имеют пониженную химическую стойкость и большую хрупкость. Мочевиноформальдегидные полимеры применяют для изготовления отделочных материалов — слоистых пластиков, а также древесностружечных плит и пенопластов. Изделия на основе этих полимеров отличаются светлым тоном и хорошо окрашиваются в любой цвет. Меламиноформалъдегидные полимеры — продукты поликонденсации меламина и формальдегида. Меламин — кристаллическое вещество, растворимое в воде, амид циануровой кислоты. Процесс конденсации этих полимеров сходен с процессом конденсации мочевины с формальдегидом. Однако меламиноформальдегидные полимеры вследствие большего числа связей («сшивок») обладают повышенной прочностью, твердостью и теплостойкостью. Обычные продукты конденсации меламина и формальдегида имеют ограниченное применение в строительстве и вследствие растворимости в воде используются в виде водных растворов. Полиуретан — продукт взаимодействия диизоцианатов и многоатомных спиртов, т. е. веществ, в молекулы которых входят две изоцианатные группы (O=C=N) и две или более гидроксильные группы. Полиуретаны чаще всего бывают линейными микрокристаллическими высокополимерами. Однако при применении веществ с полиреактивностью более двух (трехатомных спиртов или триизоциа-натов) могут быть получены и термореактивные разновидности. Полиуретаны применяют для изготовления волокон, лакокрасочных покрытий, гидроизоляционных пленок и клеев. Большое значение приобретает этот полимер для производства газонаполненных пластмасс малой плотности (до 30 кг/м3), обладающих хорошими тепло- и звукоизоляционными свойствами. Полиэфирные полимеры — высокомолекулярные соединения, получаемые в результате поликонденсации многоосновных кислот со спиртами. Широкое применение получили главным образом глиф-талевые полимеры, синтезируемые путем взаимодействия глицерина с ангидритом фталевой кислоты. Глицерин — простейший трехатомный спирт — С3Н5(ОН)3 и фталевый ангидрит (С6H4СО)2∙О в результате реакции поликонденсации образуют глифталевый полимер с трехмерными сетчатыми молекулами. В промышленности строительных материалов глифталевые полимеры используют при изготовлении лаков, эмалей и грунтовок для внутренней отделки помещений. Полиэфиры, полученные конденсацией малеинового ангидрида и этиленгликолей, называют полиэфирмалеинатами. Полиэфирма-леинатные полимеры выпускают марок ПН-1, ПН-2 и др. Полиэфиры вследствие относительной дешевизны, а также развитой сырьевой базы для их получения имеют широкое применение в качестве прочных и теплостойких лакокрасочных покрытий. Эпоксидные полимеры (полиэпоксиды) — продукты поликонденсации двух органических низкомолекулярных соединений, из которых одно должно содержать эпоксигруппу , а другое иметь подвижный атом водорода (фенолы, спирты и др.). Одной из типичных разновидностей этих полимеров является полиэпокеид, получаемый конденсацией эпихлоргидрина и диоксидифенолпропана. Эпоксидные полимеры могут быть получены как в твердом, так и в жидком состоянии. Для отверждения эпоксидных полимеров (смол) используют два вида отвердителей — каталитического и «сшивающего» действий. К отвердителям каталитического действия относят диметиламинометилфенол, фтористый бор и др., к отвердителям второго вида — полиамины, полисульфиды и др. При отверждений эпоксидных полимеров не выделяются побочные продукты реакции, что способствует изготовлению изделий на этих полимерах. Эпоксидные полимеры.обладают исключительно высокой адгезией почти ко всем материалам, в том числе к металлам, бетону, древесине, стекловолокну, хлопчатобумажным тканям. Они хорошо совмещаются со многими полимерами и после отверждения характеризуются высокой химической стойкостью, а также относительно высокой теплостойкостью — до 140—150°С. Промышленность выпускает следующие марки эпоксидных полимеров: ЭД-8, ЭД-10, ЭД-14, ЭД-20 и др. При добавлении к эпоксидным полимерам некоторых наполнителей и пластификаторов получают хорошо цементирующий материал для герметизации стыков и ремонта труб. Полиамидные полимеры — продукты реакции поликонденсации двухосновных кислот и диаминов. По своему строению и способу получения они сходны с полиэфирами. Полиамидные полимеры представляют собой твердые, высокоплавкие вещества с микрокристаллической структурой и термореактивными свойствами. В строительстве они нашли применение для изготовления влагоизолирую-щих пленок, используемых при производстве бетонных работ. Кремнийорганические полимеры (полиорганосилоксаны) — высокомолекулярные соединения, главные цепи макромолекул которых состоят из чередующихся атомов кремния и кислорода (кремнеземистый остов молекулы), а углерод входит в состав групп,.обрамляющих главную цепь (R — радикал типа СН3): Эти полимеры, получаемые из низкомолекулярных соединений — ал-килхлорсиланов и др., отличаются повышенными жесткостью и теплостойкостью. В этом смысле они как бы обладают свойствами, присущими как силикатным материалам (прочность, твердость, теплостойкость), так и органическим полимерам (эластичность, гидро-фобность, морозостойкость). Кремнийорганические полимеры в зависимости от строения исходных мономеров могут иметь линейное и пространственное строение молекул. Низкомолекулярные разновидности кремнийорганических полимеров в виде жидкостей ГКЖ-10, ГКЖ-11, ГКЖ-94 применяют для приготовления водоотталкивающих красок и придания бетонам и растворам гидрофобных свойств. Высокомолекулярные кремнийорганические полимеры используют: линейные — в герметиках, так как являются каучуками; химически «сшитые» — в пластиках для склеивания волокон и в жароупорных эмалях и лаках. Основные физико-механические свойства поликонденсационных полимеров приведены в табл. 11.2.
Таблица 11.2. Физико-механические свойства поликонденсатов
|
|||||||||||||||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 542; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.148.145.219 (0.007 с.) |