Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Неорганические теплоизоляционные материалы и изделияСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
К группе неорганических теплоизоляционных материалов относятся: минеральная и стеклянная вата и изделия из них; ячеистое стекло (пеностекло); легкие бетоны с применением вспученных перлита и вермикулита; ячеистые теплоизоляционные бетоны; асбестовые и асбестосодержащие материалы; керамические теплоизоляционные изделия и огнеупорные легковесы. Отличительной особенностью неорганических теплоизоляционных материалов является их достаточная огнестойкость, малая гигроскопичность, неподверженность загниванию, низкая теплопроводность. Минеральная вата применяется для теплоизоляции холодных (до -200°С) и горячих (до 600°С) поверхностей. Укладка ваты слоем — сравнительно трудоемкий процесс, поэтому ее чаще при засыпной изоляции превращают в гранулы во вращающемся дырчатом барабане. Однако основными видами изделий с применением минеральной ваты являются плиты полужесткие и жесткие на битумном и синтетическом (полимерном) связующем. Битумы для плит полужестких, мягких и войлока применяют с температурой размягчения 50°С и выше; из синтетических смол наибольшим применением пользуется фенолоформальдегидная водоэмульсионная или мочевиноформальдегидная смолы. Волокна минеральной ваты смешивают со связующим веществом и из полученной массы при давлении и нагревании формуют изделия. Из минеральной ваты изготовляют плиты теплоизоляционные на синтетическом связующем (фенолоспирте, растворе карбамидно-го полимера и др.) марок 50, 75, 125, 175, 200, 300 (по средней плотности). Длина плит 1000 мм, ширина 500; 1000 мм; толщина от 60 до 100 мм. Предел прочности при сжатии (при 10%-ной деформации) должен быть не менее 0,04 МПа для марки 300; предел прочности при растяжении — не менее 0,01 МПа для марок 50 и 75, предел прочности при изгибе — не менее 2 и 4 МПа соответственно для марок 200 и 300. Содержание синтетического связующего от 1,5 до 8% для плит разных марок. Теплоизоляционные плиты из минеральной ваты на битумном связующем выпускают марок: 75, 100, 150, 200, 250. Теплопроводность плит первой категории качества при температуре 25±5°С должна быть не более 0,046—0,064 Вт/(м∙К). Предел прочности на растяжение при изгибе для плит марок 200 и 250 первой категории качества соответственно не менее 0,1 и 0,12 МПа, а предел прочности при растяжении для плит марок 75 и 100 соответственно не менее 0,0075 и 0,008 МПа. Содержание битумного связующего вещества в плитах разных марок составляет 5—18%. Плиты минераловатные повышенной жесткости, изготовляемые по технологии мокрого формования гидромассы или пульпы, должны иметь среднюю плотность не более 200 кг/м3, теплопроводность — не более 0,052 Вт/(м∙К) при расходе синтетического связующего не более 10%, предел прочности при сжатии (при 10%-ной деформации) не менее 0,1 МПа. К полужестким, гибким минераловатным изделиям относят плиты и скорлупы, маты и войлочные изделия, получаемые уплотнением ваты, обработанной битумом или синтетическим связующим веществом. Выпускают прошивные маты длиной до 2500 мм, шириной до 1000 мм и толщиной 40—120 мм. По средней плотности они делятся на марки 75, 100, 125, 150, а прошивают их суровыми нитями, шпагатом, стеклянными нитями или проволокой. Эти маты выпускают с обкладками с одной или двух сторон или без обкладок. Обкладочные материалы: упаковочная бумага, металлические сетки, ткани асбестовые, стеклосетки и др. Как и другие, теплоизоляционные материалы должны обладать определенной прочностью, хотя и не высокой, но достаточной для монтажных работ и сохранения формы изделий. Из минеральной ваты на синтетическом связующем изготовляют цилиндры и полуцилиндры для теплоизоляции трубопроводов с температурой поверхности от 180 до 400°С. По средней плотности они подразделяются на марки: 100, 150, 200. Длина их 500, 1000 мм, толщина 40—80 мм, внутренний диаметр 18— 219 мм. Теплопроводность при температуре 25±5°С — 0,041—0,045 Вт/(м∙К), а при 125°С — 0,058 Вт/(м∙К). Предел прочности при растяжении для изделий разных марок не менее 0,015— 0,025 МПа (рис. 13.3).
Рис. 13.3. Минеральная вата и готовые элементы теплоизоляции из нее
Стеклянная вата и изделия из нее обладают примерно теми же свойствами, что и минеральные. Эту разновидность ваты применяют для теплоизоляции поверхностей промышленного оборудования, трубопроводов с температурой до 450°С, изделия в виде плит, матов, скорлуп — для теплоизоляции ограждающих конструкций зданий и поверхностей промышленного оборудования при температуре до 200—450°С в зависимости от связки. В зависимости от назначения и средней плотности они подразделяются на марки: ПЖС-175 и ПЖС-200 (плиты жесткие строительные); ПП-50 и ППС-75 (плиты полужесткие строительные); ППТ-40; ППТ-50; ППТ-75 (плиты полужесткие технические); МС-35, МС-50 (маты строительные); МТ-35 и МТ-50 (маты технические). По соглашению с потребителем изделия могут быть оклеены с одной или двух сторон стеклотканью, алюминиевой фольгой, синтетической пленкой и другими материалами. Они могут использоваться также в звукоизоляционных и звукопоглощающих конструкциях. Ячеистое стекло — блоки и плиты, получаемые из измельченного в порошок стекла (стеклянного боя, эрклеза) в смеси с газообра-зователем (известняком, антрацитом) и при обжиге (900—1000°С). Марки по средней плотности 200 и 300; теплопроводность при температуре 25°С — 0,09—0,10 Вт/(м∙К), предел прочности при сжатии 0,5—3,0 МПа. Плиты имеют пористость до 85—95%, размеры по длине 500 мм, ширине 400 мм, толщине 80—140 мм. Их применяют в качестве теплоизоляции ограждающих конструкций зданий (вкладыши в стеновых панелях). Они поглощают не только теплоту, но и звуковые волны. Вспученные перлит и вермикулит составляют эффективные сыпучие теплоизоляционные материалы для засыпок и набивок полостей, но особенно в качестве заполнителей легких бетонов и растворов, применяемых в монолитном и сборном строительстве. Из вспученного перлита с применением минеральных или органических связующих веществ получают жароупорный перлитобетон с частичным введением в него молотого перлита для температур 500—700°С; перлитобетон — без добавления перлитовой молотой муки; поливинилацетатоперлит; мочевиноформальдегидоперлит и др.; изделия из керамзитоперлитобетона, силикатоперлитовые, гипсоперлитовые, перлитоцементные, перлитобитумные изделия и т. п. Из вспученного вермикулита в нашей стране вырабатывают асбе-стовермикулитоперлитовые плиты и сегменты и асбестовермикули-товые плиты, скорлупы и сегменты на основе связующих веществ с применением асбеста и других добавок. Вермикулитобетон марки 50 применяют для изготовления трехслойных панелей. С использованием вспученных перлита и вермикулита можно получать материалы трех групп: 1) рядовая изоляция с температурой применения до +200°С — песок и пудра, перлитобитумная изоляция, пер-литопластбетоны, лигноперлит; 2) среднетемпературная изоляция (до +600°С) — перлитоцементы, обжиговый легковес, термоперлит; 3) высокотемпературная изоляция (800—1000°С) — эпсоперлит, пер-литокерамические изделия, жароупорный перлитобетон, перлито-фосфатные изделия, перлитовые огнеупоры и др. Ячеистые бетоны и силикаты применяют в качестве теплоизоляционных материалов и изделий при средней плотности ниже 400 кг/м3. По виду примененного порообразователя и вяжущего вещества их называют газобетонами, газосиликатами, пенобетонами, пеносиликатами. Эти бетоны могут быть со смешанным порообразователем и тогда их называют пеногазобетонами, пеногазосиликатами, керамзитопенобетонами и т. п. Из ячеистых бетонов обычно изготовляют плиты длиной до 1000 мм, шириной 400, 500, 600 мм, толщиной 80—240 мм. Их марки по средней плотности 350 и 400 кг/м3, а предел прочности при сжатии для изделий первой категории качества не менее 0,7—1 МПа и > 0,8—1 МПа для изделий высшей категории качества; теплопроводность в сухом состоянии при температуре 25°С составляет 0,093—0,104 Вт/(м∙К) и менее. Плиты из ячеистых бетонов применяют для теплоизоляции стен (рис. 13.4, а, б, в) и перекрытий, укрытия поверхностей заводского оборудования и трубопроводов (пластичные бетоны и растворы).
Рис. 13.4. Утепление стен: а — снаружи минеральной ватой и вагонкой; б — снаружи плитным утеплителем; в — внутренней теплоизоляцией — жестким утеплителем; 1 — брус; 2, 12 — стена; 3 — минвата; 4 — вагонка; 5 — штырь; б — теплоизоляция; 7 — каркас; 5 — утеплитель; 9 — отделка; 10 — пергамин; 11 — рейка
Асбестовые и асбестосодержащие теплоизоляционные материалы представлены асбестовой бумагой, картоном, шнурами разного диаметра и пр., плитами, скорлупами, сегментами и др., мастичными изоляциями с применением порошков. Штучные асбестоцементные теплоизоляционные изделия изготовляют из смеси распушенного асбеста V и VI сортов и цемента не ниже марки 300 с помощью прессования и сушки. Допускается частично заменять асбест минеральной ватой, а цемент — известково-трепельным вяжущим веществом. Изделия в виде плит (1000x500x30 мм), скорлуп (длиной 500 мм при толщине 30—40 мм) и сегментов (длиной 500 мм при толщине 50—80 мм) вырабатывают по средней плотности марок 400 и 450, прочностью при изгибе соответственно 0,2 и 0,25 МПа и теплопроводностью 0,08—0,09 Вт/(м∙К). Используют для тепловой изоляции поверхностей промышленного оборудования и трубопроводов при температуре до 450°С (рис. 13.5). С меньшей средней плотностью получают асбестовермикулито-вые изделия путем прессования и сушки гидромассы, состоящей из асбеста, вспученного вермикулита и связующих веществ. Предусмотрены три марки — 250, 300 и 350 по средней плотности (в кг/м3). Длина плит 500 и 1000 мм, ширина 500, толщина 40—100 мм, скорлупы и сегменты имеют длину 500 мм, толщину 40 и 50 мм. Их применяют при температуре изолируемых поверхностей до 600°С (рис. 13.6). Предел прочности при изгибе — не менее 0,8— 0,25 МПа (для разных марок), влажность — не более 5%.
Рис. 13.6. Изделия из асбестовермикулита
Рис. 13.5. Тепловая изоляция промышленного оборудования с помощью асбестоцемента
Многие асбестосодержащие теплоизоляционные материалы, кроме асбестового волокна, содержат 70—85% наполнителя — диатомита, трепела, магнезита и др. Целесообразно добавлять в такие смеси отходы асбошиферного производства. Представителями этой группы материалов являются асбестотрепельные (асбозурит, асботермит), асбестоизвестководиатомитовые (вулканит), иногда с частичной заменой асбеста гипсом, асбестомагнезиальные (ньювель), асбестодоломитовые (совелит) и др. С применением этих материалов изготовляют главным образом мастичную изоляцию, реже изделия. Свежеотформованные изделия направляют в сушильные камеры, в которых они высыхают при температуре 200°С Плиты маркируют в зависимости от средней плотности, определяют их прочность и теплопроводность, которые соответствуют теплоизоляционным материалам достаточно высокого качества. Особенно часто совелитовые плиты, скорлупы и сегменты используют при температурах не выше 550°С (начало разложения углекислого кальция, содержащегося в высушенном совелите). Находят широкое применение также другие разновидности асбестосодержащих материалов.
|
||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 843; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.101.51 (0.01 с.) |