Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Деформационные свойства иск оптимальной структурыСодержание книги
Поиск на нашем сайте
От искусственного строительного конгломерата, работающего в несущих конструкциях зданий и сооружений, требуется, чтобы достаточная механическая прочность сочеталась с деформационной устойчивостью, т. е. с его способностью противостоять возникновению и развитию необратимых деформаций (пластических, ползучести) или появлению и росту микротрещин. Деформационная устойчивость проявляется в затухающем характере процесса формирования деформаций, в релаксационной способности материала, с повышением которой более интенсивно снимаются напряжения, возникающие под влиянием внутренних и внешних факторов — эксплуатационных нагрузок и собственного веса конструкции, тепловых и усадочных явлений. Имеются многочисленные примеры, когда конгломератный материал, обладая достаточной прочностью, проверенной по расчетным нагрузкам, преждевременно разрушается вследствие недостаточной деформационной устойчивости, появления и развития необратимых деформаций. Чрезмерно большое время (или период) релаксации, превышающее на несколько десятичных порядков периоды наблюдений или действия нагрузки, влияет на повышение хрупкости материала с возможным образованием трещин. Наиболее деформационно-устойчивыми являются те конгломераты, которые характеризуются высокими значениями упругих и упруго-эластических деформаций в области определенного интервала температур и реального их перепада в конструкции. Упруго-эластические материалы характеризуются показателями эластичности — процентной долей спадающей деформации за определенный период времени (например, 5, 10, 30, 100 мин или больше) после их разгружения от нагрузки Р, равной по величине предельному напряжению сдвига, или какой-либо иной силовой нагрузки. Показатель эластичности выражается: (3.14) где ε0 — деформация сдвига (или другого характера), возникшая за время то под нагрузкой Р; ετ — деформация, оставшаяся после упруго-эластического восстановления в течение выбранного периода времени τ1, когда нагрузка была снята (jP = 0). По величине показателя эластичности ИСК условно разделяют на высокоэластичные, когда спад деформации наступает быстро, и низкоэластичные, при медленном спаде возникшей под нагрузкой деформации и после ее удаления. Очевидно, что, если материал в конструкции подвержен воздействию циклических нагружений и период между нагружениями (период «отдыха») будет соизмерим с продолжительностью спада низкоэластической деформации, то часть деформации сохраняется до нового цикла. С новым приложением нагрузки накапливается величина не спавшей части эластической деформации, и она постепенно может перерасти в необратимую, что создает предпосылки к деструкции материала и разрушению конструкции. В этом смысле любая деформация, в том числе и упругая, влечет за собой предрасположение структуры к повреждению, развитию в ней дефектов и даже микрощелей, к длительному процессу разрушения. Прорастание микрощелей ускоряется по мере увеличения деформаций от многократного повторения (тем более при вибрационном характере нагружения) деформирования с переходом на конечной стадии в опасную трещину и разрушение. Наибольшей упруго-эластической частью деформаций обладают вяжущие вещества при фазовых отношениях, равных с*/ф, т. е. когда их структура оптимальная. На графике в системе координат εуэ(с/ф), как и для прочностной зависимости, наблюдается максимум (рис. 3.12). Слева и справа от максимума ε*уэ располагаются вяжущие вещества тех составов, при которых упруго-эластические деформации имеют меньшую величину. Наименьшей величиной необратимых деформаций обладает вяжущее вещество при с*/ф, а слева и справа от минимума располагаются те вяжущие вещества, у которых необратимые деформации быстро возрастают, например при использовании органических связующих материалов. Снижение упруго-эластических и увеличение необратимых деформаций в левых ветвях кривой при значениях с/ф < с*/ф происходит вследствие возрастания пористости и дискретности пленки среды на частицах твердой фазы вяжущего вещества. Необратимые деформации ИСК, у которых составы размещаются левее экстремума, носят квазипластический характер. Снижение упруго-эластических и увеличение необратимых деформаций в правых ветвях кривой при значениях с/ф > с*/ф происходит под влиянием возрастающего количества свободной среды (с) в конгломерате.
Рис. 3.12. Схема изменения деформационных свойств вяжущего вещества и конгломерата с изменением отношения с/ф: I—I — линия пластических деформаций eпл; II — II — линия упруго-эластических деформаций буз; III — III — линия модулей упругости Е, МПа; 1 — вяжущее вещество; 2 — ИСК с нарастающим количеством заполнителя
С постепенным добавлением к вяжущему веществу заполнителя (активного или неактивного) изменения деформаций, как и прочностных показателей, имеют экстремальный характер — минимум у необратимых и максимум у упруго-эластических свойств при фазовом отношении с/ф, при котором показатель прочности был максимальным (см. рис. 3.12). Чем больше содержится заполнителя в конгломерате, тем меньше величина упруго-эластических свойств и больше необратимых деформаций. Если соответствующие экстремумы соединить огибающей кривой, то, по аналогии с графиком прочности, получится линия, чаще всего в виде касательной к точкам максимумов или минимумов. Следовательно, все точки огибающей кривой обусловлены оптимальным составом конгломератов. Каждой точке кривой соответствует максимум прочности и упруго-эластических деформаций, но минимум пластических деформаций. Такое сочетание механических свойств является всегда наиболее желательным в отношении ИСК, используемых в строительных конструкциях зданий и сооружений. Точки на правых и левых ветвях кривых не обладают таким благоприятным сочетанием прочностных и деформативных свойств, а составы в этих точках не являются оптимальными. Структура содержит'дискретность среды или повышенную пористость вторичного характера, например, под влиянием испарения части среды. Огибающая кривая оптимальных составов, при которых в условиях принятой технологии обеспечиваются максимальные показатели упруго-эластических свойств, может быть с достаточной для практики точностью описана уравнением гиперболического вида, аналогичным уравнению (3.3): εуэ = ε*/χS. (3.15) В формуле показатель степени s определяют подобно тому, как показатель степени п в формуле (3.3). Если величину напряжения, соответствующего прочности ИСК, разделить на относительную упругую деформацию, то получаемые значения модулей упругости можно нанести на общий график в системе E(с/ф). С увеличением количества заполняющей части в конгломерате и соответственно с увеличением фазового отношения вяжущего вещества в нем снижается величина модуля упругости, т. е. конгломерат становится менее жестким. Деформативность и модуль упругости, от которых зависит полная деформационная устойчивость ИСК, непосредственно связаны, как и прочность, со структурой материала. При этом, чем в большей мере структура вяжущего вещества соответствует коагуляционной, тем более типичными являются необратимые деформации, ниже показателя прочности и модуля упругости. С увеличением в вяжущем веществе кристаллизационной фазы возрастает доля упругой или упруго-эластической деформации. При постоянной структуре характер деформации обусловлен величиной напряжения и продолжительностью напряженного состояния, релаксационной способностью конгломерата. Последняя, в свою очередь, зависит от фазовых соотношений, содержания вяжущего и заполнителя, его разновидности, т. е. от структуры и отдельных структурных элементов. Обобщая формулы (3.3) и (3.15), можно сформулировать общую закономерность механических свойств ИСК.
Рис. 3.13. График соответствия показателей качества ИСК в створах I—I и II—II заданному уровню III—III Общие и объективные законы оптимальных структур не изолированы друг от друга, а взаимосвязаны в единую систему, и их обычно используют в совокупности, например при проектировании составов смесей или при разработке новых конгломератных материалов и технологий их изготовления. Важно, чтобы получаемые проектные составы обеспечивали при данной технологии оптимальную структуру, а технические свойства строго соответствовали не только уровню заданных показателей, но и их экстремальным значениям (рис. 3.13), т. е. не участку abc, а экстремуму d. В точках «δ» избыток показателя качества должен быть обоснован экономическим расчетом и эксплуатационными данными.
|
||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 338; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.98.43 (0.012 с.) |