Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Узлы и основные части наркозного аппарата

Поиск

Баллоны. Литые металлические сосуды, рассчитанные на высокое давление. Служат емкостью для сжатых и сжиженных газов. Давление в баллоне измеряется манометром. Обычно используют баллоны, основные характеристики которых приведены в табл. 1.

 

Табл. 4.1. Основные характеристики баллонов для медицинских газов
Характеристика баллонов Кислород (О2) Закись азота (N2O)
Окраска баллона: - Россия - международный стандарт ISO   голубой белый   Серый Голубой
Емкость баллона, л 10 и 40  
Рабочее давление, МПа   5,1
Агрегатное состояние газообразное жидкое и газообразное

 

Редукторы. Для снижения давления газа, выходящего из баллона, используют регуляторы давления (редукторы). Редукторы бывают одинарными или двойными (два одинарных, соединенных последовательно), которые нивелируют любые колебания давления на выходе из баллона.

Дозиметры. Свежая газовая смесь непрерывно поступает из баллонов в дыхательный контур наркозного аппарата. Скорость газового потока измеряется и регулируется при помощи дозиметров. Кроме того, они предназначены для формирования наркозных смесей заданного состава (кислород-закись азота, кислород-воздух). Дозиметры бывают ротаметрическими, дюзными и электронными (рис. 4.2).

Ротаметрические дозиметры газообразных анестетиков применяются в аппаратах с непрерывным потоком газа. При одновременном поступлении нескольких газов (кислород, закись азота или воздух) они смешиваются в смесительной камере дозиметра. Поток каждого газа в отдельности поступает в прозрачную ротаметрическую трубку конического сечения. Внутри трубки находится индикаторный поплавок, который является указателем скорости газотока (объемный расход в литрах в минуту). Газ, поступающий в нижний конец трубки, поднимает поплавок и придает ему вращательное движение. По мере того как поплавок поднимается, диаметр трубки увеличивается, пропуская все больший поток газа вокруг поплавка. Подъем продолжается до тех пор, пока разница давления между верхушкой и основанием поплавка позволяет поддерживать его на весу.

Обычно на наркозных аппаратах имеются ротаметры с пределами измерения 10 л/мин для кислорода, воздуха или закиси азота. Кроме того, устанавливается и второй ротаметр с пределом измерений 1-2 л/мин, последовательно соединенный с первым ротаметром. Каждый ротаметр градуирован только для определенного газа.

Дюзные дозиметры применяются в наркозных аппаратах прерывистого потока. Они формируют газовую смесь с заранее заданной концентрацией компонентов и независимо от характера газового потока. В заданных, наиболее употребительных, концентрациях газы поступают в камеры смешения через специально калиброванные отверстия (дюзы). Постоянно поддерживаемый перепад давлений по обе стороны дюз обеспечивает стабильные режимы истечения из отверстий для каждого газа. При нажатии на одну кнопку одновременно открываются два отверстия для двух газов, из которых формируется смесь определенной концентрации. Число пар дюз соответствует количеству вариантов концентраций газов, входящих в смесь, что достаточно эффективно и безопасно для больного.

Электронный контроль газового потока используется в наркозных аппаратах последнего поколения. Вместо традиционных механических газовых ротаметров для дозирования и формирования газовой смеси применяется газовый смеситель с электронным управлением.

Испарители. Летучие галогенсодержащие анестетики (галотан, энфлюран, изофлюран, севофлюран, дезфлюран) перед поступлением к больному должны перейти из жидкого состояния в газообразное, т.е. испариться. С этой целью наркозные аппараты комплектуются испарителями жидких анестетиков (рис. 4.3).

Испарители могут устанавливаться как в дыхательном контуре (испарители внутри круга циркуляции газов), так и за его пределами (испарители вне круга циркуляции газов). Испарители вне круга циркуляции газов – это испарители высокого сопротивления. Они обеспечивают прохождение газовой смеси под действием источника сжатого газа (обычно кислорода), поэтому используются в стационарных наркозных аппаратах. Испарители внутри круга циркуляции газов – это испарители низкого сопротивления. Они обеспечивают прохождение газовой смеси под действием дыхательных усилий больного и используются в военно-полевых условиях, в машинах скорой помощи - там, где должна быть обеспечена возможность работы без источника сжатых медицинских газов.

Принцип работы испарителей заключается в следующем. Газовая смесь, проходящая через испаритель, делится на две части при помощи дозирующих кранов. Первая часть проходит через камеру с жидким анестетиком (камеру испарения) и насыщается его парами. Другая часть газовой смеси (шунт-поток) в камеру испарения не попадает и не взаимодействует с жидкой фазой анестетика. При повороте дозиметрической шкалы испарителя до необходимого значения просвет дозирующих кранов изменяется, что позволяет регулировать концентрацию паров анестетика на выходе из испарителя. Если газовая смесь полностью минует камеру испарения, концентрация паров анестетика на выходе из испарителя будет равна нулю. Если же она полностью проходит через камеру испарения, то концентрация паров анестетика будет максимальной. Концентрация анестетика измеряется в объемных процентах (об.%). Например, концентрация 1 об.% означает, что каждые 100 мл газовой смеси содержат 1 мл паров анестетика.

Передозировка анестетика может иметь серьезные последствия, поэтому его точное дозирование является непременным условием безопасности анестезии. Более старые модели испарителей в силу своих технических особенностей зачастую не позволяли обеспечивать корректное дозирование анестетика при изменении температуры окружающей среды, барометрического давления и величины газотока в контуре.

Так, при повышении температуры окружающей среды, снижении барометрического давления или уменьшении газотока интенсивность испарения возрастает, что приводит к увеличению концентрации паров анестетика на выходе из испарителя. В связи с этим в более старых моделях испарителей приходилось пересчитывать выход паров анестетика с поправкой на влияние факторов внешней среды и величину газотока. Современные испарители имеют механизм термобарокомпенсации, который нивелирует влияние внешней среды на испаряемость анестетика. Кроме того, предусмотрена возможность точного дозирования анестетика в широком диапазоне потоков свежего газа (0.2-15 л/мин). Наркозные аппараты последнего поколения оборудованы сложными электронными системами, осуществляющими автоматическое инжекционное введение летучих анестетиков в дыхательный контур, регулируемые по принципу обратной связи.

Современные испарители являются специализированными, т.е. предназначенными для какого-либо определенного анестетика. Следует избегать заполнения таких испарителей “чужим” анестетиком. Так, случайное заполнение энфлюранового испарителя галотаном может привести к передозировке.

В некоторых наркозных аппаратах предусмотрена возможность одновременного использования испарителей для разных анестетиков (двух и более). В этом случае необходимы специальные ограничители, блокирующие одновременное включение более чем одного испарителя.

Адсорберы. Предназначены для поглощения выдыхаемого углекислого газа (СО2) в реверсивном дыхательном контуре. Дело в том, что при проведении анестезии по закрытому или полузакрытому контуру выдыхаемая газовая смесь, содержащая углекислый газ, возвращается в респиратор. В связи с этим возникает проблема удаления СО2 из дыхательного контура, в противном случае его концентрация на вдохе довольно быстро достигает опасных цифр, что приведет к гиперкапнии.

Адсорбер представляет собой емкость специальной конструкции, которая заполняется поглотителем углекислого газа (адсорбентом). В настоящее время с целью адсорбции СО2 применяются два основных типа сорбента: натриевая или бариевая известь.

Химическое взаимодействие между СО2 и натриевой известью может быть представлено следующим образом:

 

СО2+H2O® H2CO3

H2CO3+2NaOH® Na2CO3+2H2O+тепло

Na2CO3+Ca(OH)2® CaCO3+2NaOH

 

Химическое взаимодействие между СО2 и бариевой известью протекает по следующей схеме:

 

Ba(OH)2+8H2O+CO2® BaCO3+9H2O+тепло

9H2O+9CO2® 9H2CO3

9H2CO3+9Ca(OH)2® CaCO3+18H2O+тепло

 

Иногда в известковый сорбент добавляют цветовой индикатор, цвет которого изменяется от белого до фиолетового (или розового) по мере истощения адсорбента.

Основной признак истощения адсорбента - повышение концентрации СО2 на вдохе. Согласно последним данным, известь в адсорбере должна быть признана исчерпавшей свой ресурс и заменяться на новую в случаях, когда концентрация СО2 на вдохе превышает отметку 5-6 мм рт. ст.

В наркозных аппаратах используются два основных типа адсорберов: прямоточные и с возвратно-поступательным движением газа. Первые применяются в маятниковых системах, вторые – исключительно при работе по циркуляционному контуру. Прямоточные адсорберы в настоящее время используются достаточно редко, поскольку процессы адсорбции СО2 в них протекают менее эффективно и могут сопровождаться определенными негативными явлениями (перегревание газовой смеси, ожоги лица крупинками извести).

Клапанные устройства.

Направляющие клапаны (клапаны рециркуляции) обеспечивают однонаправленное поступление газовой смеси в дыхательном контуре, т.е. разделяют вдыхаемый и выдыхаемый поток газа. Каждый наркозный аппарат имеет два направляющих клапана: клапан вдоха и клапан выдоха. Предохранительный клапан (клапан разгерметизации) служат для предотвращения превышения заданного уровня давления в дыхательном контуре наркозного аппарата. Повышение давления в системе аппарат-больной может произойти в результате образования препятствия на пути движения газов или вследствие подачи свежей газонаркотической смеси в количестве, превышающем потребление больным. При этом предохранительный клапан открывается (происходит разгерметизация контура) и избыток газа стравливается в атмосферу. Нереверсивный клапан (однонаправленный клапан) представляет собой устройство для разделения потоков вдыхаемого и выдыхаемого газа как при спонтанном дыхании, так и при ИВЛ.

Шланги и другие детали дыхательного узла наркозного аппарата предназначены для того, чтобы вместе с клапанными устройствами регулировать подачу газонаркотической смеси в определенном направлении. Кроме того, к данному узлу относится дыхательный мешок, дыхательный мех, а также различные присоединительные коннекторы, патрубки и адаптеры. Дыхательный мешок служит резервуаром для газов и предназначен для проведения ручной ИВЛ. Дыхательный мех – приспособление, посредством которого осуществляется аппаратная ИВЛ.

 

4.1.2. Дыхательные контуры

 

Дыхательные контуры обеспечивают последний этап доставки газовой смеси к больному, соединяя дыхательные пути пациента с наркозным аппаратом. Существует много модификаций дыхательных контуров, которые различаются по эффективности, сложности и удобству использования. Тем не менее, в настоящее время Международная Комиссия по стандартизации (ISO) предлагает руководствоваться следующей классификацией дыхательных контуров (Рис 4.4):

- в зависимости от особенностей конструкции они могут быть реверсивными, нереверсивными, или относиться к системам без газового резервуара;

- в зависимости от функциональных особенностей они могут быть разделены на закрытые, полузакрытые, полуоткрытые и открытые.

4.1.2.1. Классификация дыхательных контуров в зависимости от их конструкции.

При использовании реверсивной системы выдыхаемая газовая смесь частично или полностью возвращается в наркозный аппарат для повторного вдыхания. В нереверсивной системе выдыхаемая газовая смесь не возвращается для повторного вдыхания.

Реверсивные контуры. Особенность реверсивных дыхательных контуров состоит в том, что выдыхаемая газовая смесь, смешиваясь с поступающим в контур свежим газом, вновь попадает на линию вдоха во время следующего дыхательного цикла. В связи с этим такие системы в обязательном порядке комплектуются адсорберами для удаления углекислого газа из выдыхаемой смеси.

Преимущества системы: улучшение микроклимата (температуры и влажности) в дыхательном контуре, уменьшение потерь тепла и влаги из дыхательных путей ребенка во время анестезии, экономия кислорода и средств ингаляционного наркоза, меньшее загрязнение операционной летучими анестетиками.

Недостатки системы: 1) при отсутствии достаточного мониторинга контроль за вдыхаемой концентрацией кислорода и анестетиков затруднен; 2) неисправность клапанов и/или истощение адсорбента может привести к недостаточной элиминации углекислого газа и, как следствие, к гиперкапнии и гиперкарбии.

К реверсивным дыхательным контурам относятся циркуляционный контур и маятниковый контур.

Циркуляционный контур - самый распространенный и практичный реверсивный дыхательный контур. Газовая смесь в циркуляционной системе совершает круговое движение на пути аппарат–больной–аппарат по шлангам вдоха и выдоха (Рис. 4.5). Часть выдыхаемой газовой смеси может выбрасываться в атмосферу через предохранительный клапан или клапан выдоха. Степень сброса газовой смеси в атмосферу зависит в основном от притока в систему свежего газа: чем выше газоток в контуре, тем больше выброс газовой смеси через клапаны и тем совершеннее элиминация углекислого газа. Если все клапаны закрыты, то выдыхаемая смесь полностью возвращается в аппарат и не сбрасывается в атмосферу. В обоих случаях выдыхаемая смесь проходит через адсорбер, где очищается от углекислоты.

В маятниковом контуре (Рис. 4.6) вдыхаемая и выдыхаемая газовая смесь поочередно движется по одному шлангу от аппарата к пациенту и наоборот. При этом клапан выдоха также может быть закрыт или несколько приоткрыт. Маятниковый контур используется реже, в основном у детей младшего возраста. Процесс адсорбции углекислого газа в таких системах протекает менее эффективно и может сопровождаться определенными негативными явлениями (перегревание вдыхаемой газовой смеси, ожоги лица крупинками натронной извести и т. п.).

Нереверсивные контуры. Особенность конструкции нереверсивных дыхательных контуров состоит в том, что вся выдыхаемая газовая смесь сбрасывается в атмосферу, полностью замещаясь поступающим в контур свежим газом. Полный сброс выдыхаемого газа делает ненужным использование адсорбера с поглотителем углекислого газа.

Преимущества системы: контроль за вдыхаемой концентрацией кислорода и анестетиков во вдыхаемой газовой смеси значительно упрощается.

Недостатки системы: поступление в дыхательные пути ребенка чрезмерно сухого и холодного газа, большой расход средств ингаляционного наркоза, загрязнение операционной летучими анестетиками.

В зависимости от реализованных технических решений нереверсивные дыхательные контуры могут быть клапанными или бесклапанными.

Циркуляция газовой смеси в клапанных нереверсивных дыхательных контурах (Рис. 4.7) регулируется однонаправленным клапаном (нереверсивный клапан), через который происходит полный сброс выдыхаемой газовой смеси в атмосферу. Однонаправленный клапан располагается рядом с лицевой маской или коннектором интубационной трубки. Таким образом, к пациенту по линии вдоха всегда поступает только свежая газовая смесь, а реверсия выдыхаемого газа (в том числе СО2) полностью исключается. Нереверсивные клапанные устройства имеют определенные недостатки (сопротивление дыханию и т. п.), в связи с чем у новорожденных и детей младшего возраста наиболее широкое распространение получили бесклапанные системы.

В бесклапанных нереверсивных контурах выдыхаемая газовая смесь вытесняется из дыхательной системы поступающим туда свежим газом (Рис. 4.8 и 4.9). Это становится возможным, поскольку линия вдоха в бесклапанных контурах является одновременно и линией выдоха.

При использовании дыхательных систем Ayre, Mapleson D и Е, Kuhn, Jackson-Rees и Bain выдыхаемый газ вытесняется из контура в фазу выдоха сильным однонаправленным потоком свежего газа (рис. 4.8).

В дыхательных системах Mapleson A, B и С, Lack и Magill выдыхаемый газ вытесняется из контура сильным встречным потоком свежего газа (Рис 4.9). Во время выдоха давление в контуре резко возрастает, что приводит к открытию клапана выдоха, через который весь выдыхаемый газ сбрасывается в атмосферу.

Если поток свежего газа в бесклапанном нереверсивном контуре недостаточен, то часть выдыхаемой газовой смеси будет возвращаться к пациенту. В принципе, особенности конструкции всех бесклапанных нереверсивных контуров не исключают возможности реверсии выдыхаемого газа. В бесклапанных системах адсорбер отсутствует, поэтому увеличение доли рециркулирующей выдыхаемой газовой смеси может привести к росту концентрации углекислого газа на вдохе. В связи с этим для каждого из бесклапанных контуров определен оптимальный поток свежего газа, который позволяет предотвратить реверсию выдыхаемой газовой смеси (Табл. 2). Величина газотока рассчитывается в зависимости от минутной вентиляции легких (МВЛ).

 

Табл. 4.2. Газоток, позволяющий исключить реверсию выдыхаемого газа в бесклапанном дыхательном контуре
Название контура Самостоятельное дыхание ИВЛ
Mapleson A Magill Lack 0.7-1 ´ МВЛ* 2-3 ´ МВЛ
Mapleson В и С 2 ´ МВЛ 2 ´ МВЛ
Ayre Mapleson E Kuhn 2 ´ МВЛ 2 -3 ´ МВЛ
Jackson-Rees 1.5 ´ МВЛ 1-2 ´ МВЛ
Mapleson D 1.5 ´ МВЛ 1 ´ МВЛ
Bain 200-300 мл/мин ´ кг 70 мл/мин ´ кг
Humphrey-ADE > 50 мл/мин ´ кг > 70 мл/мин ´ кг

 

* МВЛ – минутная вентиляция легких (л/мин)

 

Отличительная особенность систем без газового резервуара – отсутствие дыхательного мешка (резервуара для газов) и испарителя. Примером контуров без газового резервуара могут служить маски Esmarch, Schimmelbusch и Boyle-Davis. Техника анестезии с использованием подобных систем состоит в следующем: на лицевую маску, покрытую несколькими слоями марли, капают легкоиспаряющийся анестетик из флакона (например, фторотан), а далее во время спонтанного вдоха пары анестетика в смеси с атмосферным воздухом поступают в дыхательные пути. В настоящее время системы без газового резервуара в анестезиологии уже не используются из-за ряда принципиальных недостатков: 1) неконтролируемое поступление атмосферного воздуха в контур затрудняет точное дозирование анестетика и контроль за глубиной анестезии; 2) отсутствие дыхательного мешка делает невозможным проведение ИВЛ; 3) атмосфера операционной загрязняется парами анестетиков в наибольшей степени.

 

4.1.2.2. Классификация дыхательных контуров в зависимости от их функциональных особенностей.

В зависимости от функциональных особенностей дыхательные контуры могут быть разделены на закрытые, полузакрытые, полуоткрытые и открытые.

Закрытые контуры. Закрытый дыхательный контур - система, в которой поток свежей газовой смеси равен суммарной скорости поглощения каждого из ее компонентов. При этом вся выдыхаемая газовая смесь возвращается в аппарат для повторного вдыхания (полная реверсия выдыхаемой смеси), поэтому основное условие для проведения анестезии по закрытому контуру - наличие поглотителя углекислого газа и абсолютная герметичность дыхательной системы.

Полузакрытые контуры. Полузакрытый дыхательный контур – система, в которой поток свежей газовой смеси превышает скорость поглощения газов организмом, но ниже минутной вентиляции легких. В таких системах имеет место частичная реверсия выдыхаемой газовой смеси, причем доля рециркулирующей смеси тем больше, чем ниже поток свежего газа. Избыток газа стравливается в атмосферу через клапаны. Наличие поглотителя углекислого газа является обязательным.

Полуоткрытые контуры. Полуоткрытый дыхательный контур – система, в которой поток свежего газа равен или превышает минутную вентиляцию легких. При этом выдыхаемая газовая смесь полностью сбрасывается в атмосферу, а в фазу вдоха к пациенту поступает только свежий газ. Отсутствие реверсии выдыхаемой газовой смеси делает ненужным использование адсорбера.

Открытые контуры. В открытых дыхательных контурах вдох и выдох осуществляются из атмосферы и в атмосферу. Отсутствие газового резервуара в открытых системах приводит к неконтролируемому поступлению в контур атмосферного воздуха, в связи с чем концентрация летучих анестетиков на вдохе не поддается точному измерению. В настоящее время открытые контуры практически не применяются по соображениям безопасности пациента (см. также системы без газового резервуара).

Таким образом, дыхательные контуры выполняют не только пассивную газопроводящую функцию. Они участвуют в формировании состава вдыхаемой газонаркотической смеси, регулируя соотношение свежего газа, выдыхаемой газовой смеси и атмосферного воздуха в той или иной пропорции. Другими словами, особенности конструкции дыхательных контуров тесно связаны с их функциональными особенностями.

Так, реверсивные контуры могут функционировать как закрытые, полузакрытые и полуоткрытые (Табл. 3).

Если поток свежего газа соответствует суммарной скорости поглощения компонентов газонаркотической смеси, то реверсивный контур функционирует как закрытый. После того, как выдыхаемая смесь проходит через адсорбер, вся она попадает на линию вдоха и вновь поступает к пациенту.

Реверсивные контуры могут функционировать как полузакрытые, если поток свежего газа превышает скорость утилизации газов организмом, но ниже минутной вентиляции легких. В этом случае имеет место частичная реверсия выдыхаемой газовой смеси, причем доля рециркулирующей смеси обратно пропорциональна потоку свежего газа.

Реверсивные контуры могут функционировать как полуоткрытые, если поток свежего газа равен или превышает минутную вентиляцию легких. В этом случае выдыхаемая газовая смесь полностью сбрасывается в атмосферу, а в фазу вдоха к пациенту поступает только свежий газ.

И, наконец, реверсивные контурыни при каких условиях не могут функционировать как открытые, поскольку их конструкция исключает возможность неконтролируемого поступления атмосферного воздуха в систему.

Табл. 4.3. Использование дыхательных контуров в зависимости от их конструкции и функциональных особенностей
Контуры реверсивные Нереверсивные   Системы без газового резервуара
Бесклапанные клапанные
открытые Æ (+) (+) +
полуоткрытые + + + (+)
полузакрытые + (+) Æ Æ
закрытые + Æ Æ Æ

 

 

+ - использование возможно, (+) - ограниченное использование, Æ - использование невозможно

 

Бесклапанные нереверсивные контуры могут функционировать как полуоткрытые, а при определенных условиях - как открытые и полузакрытые контуры (Табл. 3).

Если газоток в бесклапанном контуре равен или превышает минутную вентиляцию легких (соответствует рекомендуемым оптимальным значениям - табл. 2), то реверсия выдыхаемой газовой смеси становится невозможной и система функционирует как полуоткрытая.

Если газоток в бесклапанном контуре ниже минутной вентиляции легких (не соответствует оптимальным значениям), то имеет место частичная рециркуляция выдыхаемой газовой смеси. В этом случае бесклапанный контур перестает быть нереверсивным и начинает функционировать как полузакрытый. В бесклапанных системах адсорбер отсутствует, поэтому на практике это становится возможным лишь при условии тщательного мониторинга концентрации углекислого газа на вдохе.

Если газовый резервуар системы относительно невелик, а газоток слишком мал, то в бесклапанный контур в фазу вдоха начинает поступать атмосферный воздух, т. е. он начинает функционировать как открытый.

И, наконец, в силу особенностей конструкции бесклапанные контуры ни при каких условиях не могут функционировать как закрытые контуры.

Клапанные нереверсивные контуры. Работа однонаправленного клапана полностью исключает реверсию выдыхаемого газа, в связи с чем клапанные нереверсивные системыне могут функционировать как закрытые или полузакрытые контуры (Табл. 3).

В клапанных нереверсивных контурах во время вдоха к пациенту поступает только свежий газ, поэтому газоток должен быть равен или несколько превышать минутную вентиляцию легких. Таким образом, основное функциональное предназначение клапанных систем - работа по полуоткрытому контуру.

Тем не менее, клапанные нереверсивные контуры могут функционировать и как открытые контуры. Это становится возможным, если линия вдоха через какое-либо отверстие сообщается с атмосферой, а поток свежего газа слишком мал и/или газовый резервуар имеет небольшую емкость. В этом случае в клапанный нереверсивный контур в фазу вдоха начинает поступать атмосферный воздух, вследствие чего концентрация летучих анестетиков на вдохе перестает поддаваться точному расчету.

Системы без газового резервуара. Основное предназначение таких систем – работа по открытому контуру (вдох и выдох осуществляются из атмосферы и в атмосферу) – Табл. 3.

Если газоток в контуре чересчур велик, а дыхательный объем слишком мал, то гортаноглотка, заполняясь свежей газовой смесью, принимает на себя функцию газового резервуара. В этом случае к пациенту во время вдоха поступает только свежий газ, а вся система начинает функционировать как полуоткрытая.

И, наконец, системы без газового резервуара в силу особенностей конструкциине могут функционировать как закрытые или полузакрытые контуры.

4.1.3. Наркозные аппараты.

Современные наркозные аппараты являются универсальными: они позволяют проводить ингаляционную анестезию как у младенцев, так и у детей старшего возраста. Это достигается использованием лицевых масок различного размера, шлангов и переходников различной длины и диаметра, взаимозаменяемых дыхательных мехов и мешков большей или меньшей емкости, а также дополнительной комплектацией аппарата дыхательным контуром для детей младшего возраста. Вместе с тем отечественная и мировая промышленность выпускает наркозные аппараты, предназначенные исключительно для новорожденных и детей младшего возраста. Основные требования, предъявляемые к устройствам для ингаляционного наркоза у детей данной возрастной группы, следующие: а) минимальное сопротивление дыханию, особенно выдоху; б) минимальный мертвопространственный эффект; в) возможность поддержания оптимальной температуры и влажности вдыхаемой газовой смеси.

Новейшие наркозные аппараты снабжены спирометрами (измеряют дыхательный объем и минутную вентиляцию легких), манометрами (измеряют давление в дыхательном контуре), и оборудованы самыми разными дополнительными мониторами (газоанализатор, пульсоксиметр, электрокардиоскоп и т.п.). В современных аппаратах встроен блок тревожной сигнализации, срабатывающий при разгерметизации контура, аварийном прекращении подачи кислорода и изменении предустановленных параметров вентиляции, предусмотрена автоматическая блокировка поступления закиси азота при внезапном прекращении подачи кислорода, имеется система улавливания и отвода отработанных газов. Между наркозным аппаратом и дыхательным контуром иногда подсоединяют увлажнители, которые согревают и увлажняют вдыхаемую газовую смесь, и распылители (небулайзеры), которые разбрызгивают частицы воды в виде аэрозоля.

В настоящее время в нашей стране наиболее широкое распространение получили отечественные наркозные аппараты семейства “РО”, “Наркон”, “Полинаркон”, “Спирон” и “Красногвардеец”, а также зарубежные модели фирм Dräger, Ohmeda, Megamed, Siemens, Engström и Heyer. Общий вид современного наркозного аппарата представлен на рис 4.10.



Поделиться:


Последнее изменение этой страницы: 2016-04-08; просмотров: 1520; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.122.95 (0.016 с.)