Мы поможем в написании ваших работ!
ЗНАЕТЕ ЛИ ВЫ?
|
Как выбрать подходящие методы решения частных проблем обработки данных, играющих, тем не менее, важную роль в достижении конечного результата, и как организовать управление процессом.
Содержание книги
- III) перечень дополнительных возможностей, которые, по-вашему, имеет смысл реализовать в этой среде разработки.
- Процесс прекращается (а эксперты расходятся по домам), когда проблема будет решена.
- Почему для HEARSAY-II выбрана такая архитектура
- Система HEARSAY-III— оболочка для создания систем с доской объявлений
- Инструментальные среды AGE и ОРМ
- Исполнение (выбранные для выполнения записи активизации источников знаний).
- Основной цикл работы вв1 состоит из следующих операций.
- Интеграция стратегий логического вывода
- Организация доски объявлений в системе GBB
- На уровне выполнения действий, предусмотренных записью активизации источника знаний.
- Что такое источник знаний в системе с доской объявлений?
- Система отслеживания истинности выполняет по отношению к базе данных четыре функции.
- Дуальная структура обоснований, предложенная дойлом, может быть использована для разделения допущений на три группы.
- Отслеживание истинности предположений, основанное на анализе допущений
- Предположим также, что в модели имеется обоснование
- Поскольку требуется знание только о корректном поведении объекта, потенциально метод должен сработать и при диагностировании неисправностей, которые ранее не возникали и незнакомы эксперту-человеку.
- Поясните отличие между монотонным и немонотонным пересмотром.
- Оптимизация производительности набора правил.
- Обе задачи относятся к классу методик, который мы назвали супервизорным обучением, поскольку в распоряжении программы Имеется и специально подготовленная обучающая выборка, и пространство атрибутов.
- Формирование и уточнение правил
- Построение дерева решений и порождающих правил
- Для какого-либо объекта, который нужно классифицировать, тестирующую процедуру можно рассматривать как источник сообщений об этом объекте.
- Квинлан применил следующую стратегию формирования множества правил из дерева решений.
- Эффективность набора правил в целом и достоверность получаемого результата.
- Суммирование выполняется по всем
- Применение теории Демпстера—Шефера к системе MYCIN
- Для классификации подходов к оценке степени доверия, не основанных на теории вероятностей, горвиц использует четыре категории:
- Таким образом, ясно просматривается тенденция к повышению уровня обоснованности как в теоретических работах, так и в практическом воплощении соответствующих методов в реальных системах.
- Глава 22. рассуждения, основанные на прецедентах
- В системах формирования суждений на основе прецедентов используются разные схемы извлечения прецедентов и их адаптации к новым проблемам.
- Обучение с помощью компьютера: система САТО
- Обучение с помощью системы САТО
- Сравнение систем, основанных на правилах и прецедентах
- Flat(bottom, obj). concave(top, obj).
- Оболочка экспертной системы MINERVA
- Использование прецедентов для обработки исключений
- Такое правило должно быть связано в библиотеке с прецедентом, в котором упоминается 18-летний юноша, успешно прошедший тесты повышенной сложности и выплачивающий взнос по сниженному тарифу.
- В отношении систем искусственного интеллекта вообще и экспертных систем, в частности, иногда можно услышать следующие критические замечания.
- SCALIR — гибридная система для извлечения правовой информации
- Узел I может находиться в конце сети распространения активности, А следовательно, информация от пользователя (обратная связь) должна распространяться по сети в обратном направлении.
- В предыдущих главах мы акцентировали ваше внимание на тех концепциях искусственного интеллекта, которые положены в основание технологии проектирования экспертных систем. Ниже мы кратко перечислим их.
- Как выбрать подходящие методы решения частных проблем обработки данных, играющих, тем не менее, важную роль в достижении конечного результата, и как организовать управление процессом.
- Языки программирования систем искусственного интеллекта
- Решение практических проблем
- Архитектура экспертных систем
- Тем, кого интересуют определенные темы исследований, я рекомендую регулярно просматривать материалы конференций
- Cannon H. I. (1982). FLAVORS: a non-hierarchical approach to object-oriented programming. Unpublished paper.
- Forgy C. L. (1982). Rete: a fast algorithm for the many pattern/many object pattern match
- Linster M. and Musen M. A. (1992). Use of KADS to create a conceptual model of the
- Sandewall E. (1986). Nonmonotonic inference rules for multiple inheritance with exceptions. In
Языки представления знания являются языками высокого уровня, специально предназначенными для кодирования в явном виде фрагментов знаний человека, таких как правила влияния и набор свойств типовых объектов, причем высокий уровень языка проявляется в том, что от пользователя скрываются, насколько это возможно, технические подробности механизма представления знаний. Конечно, пользователь при желании может познакомиться со всеми деталями, но идея состоит в том, что это совсем не обязательно делать в процессе разработки программы. В отличие от более привычных языков профаммирования, языки представления знаний исключительно экономичны в смысле объема программного кода. В значительной мере это объясняется тем, что заботу о множестве мелочей берет на себя интерпретатор языка. Можно показать, что большинство из них обладает всеми признаками машины Тьюринга, другими словами, такие интерпретаторы теоретически способны выполнять любые вычисления, которые под силу машине, реализующей программу, написанную на любом из "обычных" языков программирования.
Несмотря на отмеченные достоинства таких языков, нельзя забывать и о существовании определенных проблем при их применении.
Переход от описания знаний о предметной области на всем понятном "человеческом" языке к их представлению в виде какого-либо формализма, воспринимаемого компьютером, требует определенного искусства, поскольку невозможно (по крайней мере, на сегодняшний день) описать, как механически выполнить такое преобразование. Так как возможности логического вывода, которые может реализовать программа, напрямую связаны с выбором способа представления знаний, то, по моему мнению, именно представление знаний, а не их извлечение является самым узким местом в практике проектирования экспертных систем.
Существует определенный баланс противоречий между выразительностью языка представления знаний и простотой трактовки представленных в нем процедур определения логического влияния. Другими словами, чем более концентрировано будут представлены знания в языковой форме, тем сложнее, а значит, и дольше будет процесс их осознания.
В большинстве случаев представление знаний осложняется неуверенностью в них или неопределенностью высказываемых суждений. Наши знания по самой своей природе часто являются неполными и содержат множество догадок и предположений.
Вызов со стороны проблемы представления знаний состоит в том, что мы не можем себе позволить опустить руки перед сложностями, связанными с передачей знаний от человека программе, возможностью их адекватной трактовки и неопределенностью знаний.
Мы вынужденно согласились на довольно эмпирический подход к переводу знаний на язык формальных правил или описаний объектов. Это действительно больше искусство, чем наука, и чем больше вы создадите правил и объектов в процессе своей деятельности, тем более высокого уровня совершенства добьетесь в этом деле. Вопреки распространенному мнению, эта работа далеко не каждому по плечу.
Желая добиться логической полноты, мы часто сталкиваемся с проблемой необозримости. Но чаще всего нам совсем нет нужды получать все логически возможные решения проблемы — можно отыскать только оптимальное или любое, удовлетворяющее заданным ограничениям.
При работе с неопределенностями мы согласны закрыть глаза на некоторую математическую некорректность. Хотя многие используемые на практике варианты схем влияния и не вполне согласуются с аксиомами теории вероятностей, мы идем на определенные упрощения ради практической выгоды.
Сказанное выше нужно расценивать как констатацию реально существующей ситуации. Я не сомневаюсь, что дальнейшие исследования методов представления знаний позволят нам лучше понять смысл этих компромиссов, но в настоящее время мы располагаем методами, которые вполне устраивают нас на практике.
Отошли в прошлое оживленные дискуссии на отвлеченные темы вроде "Может ли машина мыслить?" или "Как действительно представляются знания в мозге человека?" Сейчас чаще всего задаются вопросом: "Что позволяет сделать данная технология?", а ответ на него может быть получен только программой, в которой сконцентрированы результаты теоретической и практической работы, а не метафизические спекуляции.
|