Мы поможем в написании ваших работ!
ЗНАЕТЕ ЛИ ВЫ?
|
Суммирование выполняется по всем
Содержание книги
- Правила и процедуры в инструментальной среде М.4
- III) перечень дополнительных возможностей, которые, по-вашему, имеет смысл реализовать в этой среде разработки.
- Процесс прекращается (а эксперты расходятся по домам), когда проблема будет решена.
- Почему для HEARSAY-II выбрана такая архитектура
- Система HEARSAY-III— оболочка для создания систем с доской объявлений
- Инструментальные среды AGE и ОРМ
- Исполнение (выбранные для выполнения записи активизации источников знаний).
- Основной цикл работы вв1 состоит из следующих операций.
- Интеграция стратегий логического вывода
- Организация доски объявлений в системе GBB
- На уровне выполнения действий, предусмотренных записью активизации источника знаний.
- Что такое источник знаний в системе с доской объявлений?
- Система отслеживания истинности выполняет по отношению к базе данных четыре функции.
- Дуальная структура обоснований, предложенная дойлом, может быть использована для разделения допущений на три группы.
- Отслеживание истинности предположений, основанное на анализе допущений
- Предположим также, что в модели имеется обоснование
- Поскольку требуется знание только о корректном поведении объекта, потенциально метод должен сработать и при диагностировании неисправностей, которые ранее не возникали и незнакомы эксперту-человеку.
- Поясните отличие между монотонным и немонотонным пересмотром.
- Оптимизация производительности набора правил.
- Обе задачи относятся к классу методик, который мы назвали супервизорным обучением, поскольку в распоряжении программы Имеется и специально подготовленная обучающая выборка, и пространство атрибутов.
- Формирование и уточнение правил
- Построение дерева решений и порождающих правил
- Для какого-либо объекта, который нужно классифицировать, тестирующую процедуру можно рассматривать как источник сообщений об этом объекте.
- Квинлан применил следующую стратегию формирования множества правил из дерева решений.
- Эффективность набора правил в целом и достоверность получаемого результата.
- Суммирование выполняется по всем
- Применение теории Демпстера—Шефера к системе MYCIN
- Для классификации подходов к оценке степени доверия, не основанных на теории вероятностей, горвиц использует четыре категории:
- Таким образом, ясно просматривается тенденция к повышению уровня обоснованности как в теоретических работах, так и в практическом воплощении соответствующих методов в реальных системах.
- Глава 22. рассуждения, основанные на прецедентах
- В системах формирования суждений на основе прецедентов используются разные схемы извлечения прецедентов и их адаптации к новым проблемам.
- Обучение с помощью компьютера: система САТО
- Обучение с помощью системы САТО
- Сравнение систем, основанных на правилах и прецедентах
- Flat(bottom, obj). concave(top, obj).
- Оболочка экспертной системы MINERVA
- Использование прецедентов для обработки исключений
- Такое правило должно быть связано в библиотеке с прецедентом, в котором упоминается 18-летний юноша, успешно прошедший тесты повышенной сложности и выплачивающий взнос по сниженному тарифу.
- В отношении систем искусственного интеллекта вообще и экспертных систем, в частности, иногда можно услышать следующие критические замечания.
- SCALIR — гибридная система для извлечения правовой информации
- Узел I может находиться в конце сети распространения активности, А следовательно, информация от пользователя (обратная связь) должна распространяться по сети в обратном направлении.
- В предыдущих главах мы акцентировали ваше внимание на тех концепциях искусственного интеллекта, которые положены в основание технологии проектирования экспертных систем. Ниже мы кратко перечислим их.
- Как выбрать подходящие методы решения частных проблем обработки данных, играющих, тем не менее, важную роль в достижении конечного результата, и как организовать управление процессом.
- Языки программирования систем искусственного интеллекта
- Решение практических проблем
- Архитектура экспертных систем
- Тем, кого интересуют определенные темы исследований, я рекомендую регулярно просматривать материалы конференций
- Cannon H. I. (1982). FLAVORS: a non-hierarchical approach to object-oriented programming. Unpublished paper.
- Forgy C. L. (1982). Rete: a fast algorithm for the many pattern/many object pattern match
- Linster M. and Musen M. A. (1992). Use of KADS to create a conceptual model of the
Ai 2O.
Суммарное доверие Bel для любого фокального элемента А может быть найдено суммированием значений т по всем подмножествам в А. Таким образом, Bel является функцией, определенной на множестве 2е значений из интервала [0,1], такой, что
Bel(A) = B Am(B).
Ве1(0) всегда равно 1, независимо от значения т(O). Это следует из определения функции присвоения базовых вероятностей. Соотношение Ве1(O) = 1 означает следующее: можно с полной уверенностью утверждать, что в пространстве 0 обязательно имеется корректная гипотеза, поскольку по определению набор гипотез является исчерпывающим. Значение m(O) отображает вес свидетельства, еще не учтенного в подмножествах, входящих в пространство 0. Значения Bel и т будут равны для множеств, состоящих из единственного элемента.
Оценка вероятности фокального элемента А будет ограничена снизу оценкой доверия к А, а сверху — оценкой привлекательности А, которая равна 1 - Веl(Aс)> где Aс — дополнение к A.
Оценка привлекательности A, Рls(A), представляет степень совместимости свидетельства с гипотезами в А и может быть вычислена по формуле
Рls(A)= A^B не равно пустому множеству m(B).
Поскольку определенная таким образом оценка привлекательности А есть не что иное, как мера нашего недоверия к -A, то можно записать:
Рls (A) = 1 - Вel (-A).
Значение оценки привлекательности А можно рассматривать как предел, до которого можно улучшить гипотезы из А при наличии свидетельств в пользу гипотез-конкурентов. Удобно рассматривать информацию, содержащуюся в оценке Bel для данного подмножества, в виде доверительного интервала в форме [Вel(A), Pls(A)]. Ширина интервала может служить оценкой неуверенности в справедливости гипотез из А при имеющемся наборе свидетельств.
Правила Демпстера позволяют вычислить новое значение функции доверия по двум ее значениям, базирующимся на разных наблюдениях. Обозначим Bel1 и Веl2 два значения функции доверия, которым соответствуют два значения функции присвоения базовых вероятностей т1 и тг. Правило позволяет вычислить новое значение т1+т2, а затем и новое значение функции доверия Веl1+ Веl2, основываясь на определениях, приведенных выше.
Для гипотезы А значение т1+т2(А) есть сумма всех произведений в форме т1(Х) m2(Y), где X и Y распространяются на все подмножества в в, пересечением которых является А. Если в таблице пересечений будет обнаружен пустой элемент, выполняется нормализация. В процедуре нормализации значение k определяется как сумма всех ненулевых значений, присвоенных в множестве 0, затем т1+т2(0) присваивается значение нуль, а значения m1+m2 для всех других множеств гипотез делится на (1 - k).
Таким образом,
m1+m2= X^Y=A[m1(X)m2(Y)]/[1- X^Y=пустое множество{ m1(X)m2(Y) }]
Следует учитывать, что значения т 1 и m2 сформированы по независимым источникам свидетельств в пределах того же пространства гипотез. Обратите внимание и на тот факт, что вследствие коммутативности операции умножения правило Демпстера дает один и тот же результат при любом порядке объединения свидетельств.
|