Мы поможем в написании ваших работ!
ЗНАЕТЕ ЛИ ВЫ?
|
Узел I может находиться в конце сети распространения активности, А следовательно, информация от пользователя (обратная связь) должна распространяться по сети в обратном направлении.
Содержание книги
- III) перечень дополнительных возможностей, которые, по-вашему, имеет смысл реализовать в этой среде разработки.
- Процесс прекращается (а эксперты расходятся по домам), когда проблема будет решена.
- Почему для HEARSAY-II выбрана такая архитектура
- Система HEARSAY-III— оболочка для создания систем с доской объявлений
- Инструментальные среды AGE и ОРМ
- Исполнение (выбранные для выполнения записи активизации источников знаний).
- Основной цикл работы вв1 состоит из следующих операций.
- Интеграция стратегий логического вывода
- Организация доски объявлений в системе GBB
- На уровне выполнения действий, предусмотренных записью активизации источника знаний.
- Что такое источник знаний в системе с доской объявлений?
- Система отслеживания истинности выполняет по отношению к базе данных четыре функции.
- Дуальная структура обоснований, предложенная дойлом, может быть использована для разделения допущений на три группы.
- Отслеживание истинности предположений, основанное на анализе допущений
- Предположим также, что в модели имеется обоснование
- Поскольку требуется знание только о корректном поведении объекта, потенциально метод должен сработать и при диагностировании неисправностей, которые ранее не возникали и незнакомы эксперту-человеку.
- Поясните отличие между монотонным и немонотонным пересмотром.
- Оптимизация производительности набора правил.
- Обе задачи относятся к классу методик, который мы назвали супервизорным обучением, поскольку в распоряжении программы Имеется и специально подготовленная обучающая выборка, и пространство атрибутов.
- Формирование и уточнение правил
- Построение дерева решений и порождающих правил
- Для какого-либо объекта, который нужно классифицировать, тестирующую процедуру можно рассматривать как источник сообщений об этом объекте.
- Квинлан применил следующую стратегию формирования множества правил из дерева решений.
- Эффективность набора правил в целом и достоверность получаемого результата.
- Суммирование выполняется по всем
- Применение теории Демпстера—Шефера к системе MYCIN
- Для классификации подходов к оценке степени доверия, не основанных на теории вероятностей, горвиц использует четыре категории:
- Таким образом, ясно просматривается тенденция к повышению уровня обоснованности как в теоретических работах, так и в практическом воплощении соответствующих методов в реальных системах.
- Глава 22. рассуждения, основанные на прецедентах
- В системах формирования суждений на основе прецедентов используются разные схемы извлечения прецедентов и их адаптации к новым проблемам.
- Обучение с помощью компьютера: система САТО
- Обучение с помощью системы САТО
- Сравнение систем, основанных на правилах и прецедентах
- Flat(bottom, obj). concave(top, obj).
- Оболочка экспертной системы MINERVA
- Использование прецедентов для обработки исключений
- Такое правило должно быть связано в библиотеке с прецедентом, в котором упоминается 18-летний юноша, успешно прошедший тесты повышенной сложности и выплачивающий взнос по сниженному тарифу.
- В отношении систем искусственного интеллекта вообще и экспертных систем, в частности, иногда можно услышать следующие критические замечания.
- SCALIR — гибридная система для извлечения правовой информации
- Узел I может находиться в конце сети распространения активности, А следовательно, информация от пользователя (обратная связь) должна распространяться по сети в обратном направлении.
- В предыдущих главах мы акцентировали ваше внимание на тех концепциях искусственного интеллекта, которые положены в основание технологии проектирования экспертных систем. Ниже мы кратко перечислим их.
- Как выбрать подходящие методы решения частных проблем обработки данных, играющих, тем не менее, важную роль в достижении конечного результата, и как организовать управление процессом.
- Языки программирования систем искусственного интеллекта
- Решение практических проблем
- Архитектура экспертных систем
- Тем, кого интересуют определенные темы исследований, я рекомендую регулярно просматривать материалы конференций
- Cannon H. I. (1982). FLAVORS: a non-hierarchical approach to object-oriented programming. Unpublished paper.
- Forgy C. L. (1982). Rete: a fast algorithm for the many pattern/many object pattern match
- Linster M. and Musen M. A. (1992). Use of KADS to create a conceptual model of the
- Sandewall E. (1986). Nonmonotonic inference rules for multiple inheritance with exceptions. In
Таким образом, получаемая от пользователя информация обратной связи должна распространяться по сети примерно так же, как активность. Максимальное значение обратной связи для каждого узла записывается и обновляется в процессе распространения, и эти значения в дальнейшем играют роль членов fi и аj в приведенном выше выражении. Далее полученные значения весов нормализуются таким образом, чтобы их сумма для каждого отдельного узла была равна 1.0.
Конечно, в реальной системе SCALIR процесс самообучения несколько сложнее, поскольку в ней существуют связи разных типов. Читателям, интересующимся деталями этого процесса, следует познакомиться с работой [Rose, 1994], Но идея комбинированного использования символических и субсимволических методов заслуживает дальнейшего углубленного изучения. В системе SCALIR продемонстрирован довольно прагматический компромисс между чисто статистическим подходом к извлечению информации и традиционным подходом для экспертных систем, требующим большого объема знаний о предметной области.
Будущее гибридных систем
Итак, вы могли убедиться на представленном в этой главе материале, что гибридные системы потенциально являются довольно мощным инструментом решения сложных проблем, которые не под силу отдельным "чистым" подходам. На примере сравнения систем ODYSSEUS и EMYCIN вы могли убедиться в том, что в первой использована гораздо более сложная методология построения и настройки базы знаний, которая не идет ни в какое сравнение с методикой синтаксического контроля, примененной в EMYCIN. Предстоит еще очень много сделать в теории экспертных систем, прежде чем такие системы смогут эмулировать способность к постоянному совершенствованию, которой обладает человек-эксперт.
Аналогично, комбинирование парадигм использования правил и прецедентов позволяет повысить эффективность обработки исключений, не усложняя при этом набор правил.
В системе SCALIR продемонстрирована возможность комбинированного использования в рамках одной системы символического и субсимволического подходов, которые обычно рассматриваются многими специалистами как взаимно исключающие.
Следует надеяться, что в будущем мы станем свидетелями еще более значительного прогресса в этом направлении. Однако в теории искусственного интеллекта наблюдаются и тенденции движения в совершенно другом направлении, противоположном созданию гибридных систем. Имеет смысл здесь кратко упомянуть о них.
Программное обеспечение систем искусственного интеллекта в значительной мере привязано к определенным платформам и реализовано на языках, которые используются только в области искусственного интеллекта.
Методология разработки программного обеспечения систем искусственного интеллекта все еще отстает от современной практики создания программ, предполагающей использование объектно-ориентированного анализа и разработки, так же, как и технологии разработки распределенных многокомпонентных приложений.
Для программ систем искусственного интеллекта характерны все недостатки, присущие исследовательским продуктам, — отсутствие полноценной документации, низкая надежность, возможность использования только в организации, где она была создана.
Существует еще и психологический барьер, который трудно преодолеть современным исследователям, многие из которых стояли у истоков тех или иных подходов и не склонны переходить на сторону "конкурентов". Но этот барьер, скорее всего, будет преодолен новым поколением исследователей и разработчиков.
Рекомендуемая литература
В последнее время появилось множество программных продуктов, в которых комбинируются методики, основанные на применении правил и прецедентов. Примером может служить система CBR Express, разработанная фирмой Inference Corp., которая используется в качестве надстройки над системой ART-IM [Davles and May, 1995].
Разработки оболочек экспертных систем, в которых комбинируется применение правил логического вывода и обучения или нейронных сетей, находятся пока что в зачаточном состоянии. Попытки использовать нейронные сети в сочетании с традиционными экспертными системами описаны в работе [Кат et al, 1991]. В этой связи следует упомянуть и систему NeuroShell 2, разработанную фирмой Neuron Data, в которой порождающие правила используются для предварительной обработки информации, после чего она передается в нейронную сеть. Полученная на выходе нейронной сети информация также может быть обработана с помощью системы правил
Упражнения
|