Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Скорость и ускорение при гармоническом колебании. Энергия гармонического осциллятора.↑ Стр 1 из 10Следующая ⇒ Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Скорость и ускорение при гармоническом колебании. Энергия гармонического осциллятора.
Скорость и ускорение при гармоническом колебании. = - амплитудное значение скорости Скорость опережает смещение по фазе на . = Сдвиг фаз между и равен , они колеблются в противофазах. Сила. Силы, которые подчиняются закону упругой силы, но по природе своей не являются упругими называются квазиупругими. Гармонические колебания – это колебания, которые происходят под действием квазиупругой силы, то есть силы, пропорциональной смещению. 6. Энергия гармонического осциллятора. (кинетическая Энергия, Т + потенциальная энергия, П = полной энергии, Е). Пусть . Тогда = = = + = . - полная энергия механического осциллятора не зависит от и пропорциональна . Механический осциллятор есть консервативная система, так как . Выводы: Кинетическая и потенциальная энергии по отдельности зависят от времени. Максимальная кинетическая энергия равна максимальной потенциальной энергии и равна полной энергии. Средняя кинетическая энергия равна средней потенциальной энергии и равна половине полной энергии. Полная энергия не зависит от времени и пропорциональна квадрату амплитуды. Лекция 8. Сложение колебаний. Сложение колебаний – задача сложная и часто пользуются искусственными приемами для ее решения. Представим гармоническое колебание в виде вектора амплитуды.
В момент проекция на ось вектора равна . Получили уравнение гармонических колебаний. Итак, всякому гармоническому колебанию можно сопоставить вектор амплитуды, вращающийся с угловой скоростью , равной круговой частоте колебания. Тогда проекция этого вектора на ось совершает гармонические колебания. Физического смысла здесь нет, но решение задачи облегчается. 1. Сложение гармонических колебаний одного направления и одной частоты. . Изобразим их графически:
Векторы и вращаем с . Поскольку частоты равны, то параллелограмм, не деформируясь, вращается с той же частотой. Длина не меняется. Его проекция совершает гармонические колебания. , но . То есть результирующее колебание гармоническое, имеет ту же частоту, что и слагаемые колебания. Амплитуду находим из начальных условий по формуле , 2. Биения. Рассмотрим сложение колебаний одинаковой амплитуды и близких частот , , . Решение задачи усложняется. . Если изобразить эти колебания с помощью вектора амплитуды, то они вращаются с разными угловыми скоростями, и всегда будет момент, когда . Фазы в этот момент принимают за нуль. Тогда . = = = . = - уравнение биений. Первый множитель медленно меняется, второй – быстро. Уравнение можно представить в виде Сравним с уравнением гармонических колебаний . Уравнение биений – негармоническое, но меняется медленно, так как мало. . Поэтому биения – приблизительно гармонические колебания с медленно меняющейся амплитудой, может быть больше и меньше нуля. - амплитуда. Для гармонических колебаний
Амплитуда ограничивает . (Проводим штрихами симметричную кривую внизу).Частота . . Получили биения – усиление и ослабление колебаний. Метод биений широко применяется на практике. Основан на сравнении искомой частоты с частотой эталона. Метод биений – это один из наиболее точных методов измерения частот, емкостей, индуктивностей. Применяют для настройки музыкальных инструментов. Скорость и ускорение при гармоническом колебании Примеры проявления резонансных явлений в живых организмах. В лаборатории электроакустики в Марселе испытывали генератор, создававший акустические волны с частотой 7 Гц (инфразвук), люди испытывали сильные внутренние боли, нарушение координации движений и зрения. Оказалось, что инфразвук действует на вестибулярный аппарат, собственная частота которого 2…20 Гц; он переходит в резонансные колебания, нарушающие деятельность вестибулярного аппарата. Инфразвук также вызывает вынужденные колебания различных органов, каждый из которых обладает собственной частотой. Некоторые из них, такие как печень, почки, сами по себе не совершают колебательных движений, но под действием внешней периодической силы могут войти с ней в резонанс. Медики обратили внимание на опасный резонанс брюшной полости (4…8 Гц). Резонансные явления раздражают рецепторы, передающие информацию в нервные центры. Таким образом, создаются рефлекторные реакции организма на раздражитель. Это сопровождается ощущением боли, неприятными ощущениями, затруднением дыхания. Особенно вредны резонансные явления для сердца. Это приводит к расширению кровеносных сосудов и кровоизлияниям. Если резонансные колебания находятся в противофазе, то возможны торможение кровообращения, остановка сердца. Некоторые исследователи указывают на психическое действие инфразвука. У облученных им людей поражаются все виды интеллектуальной деятельности, появляется чувство тревоги, страха. Такие же явления имеют место и у животных. (Источники – двигатели, компрессоры, электродойки.) Отрицательное воздействие на молокоотдачу и многие физиологические функции сельскохозяйственных животных. КОЛЕБАТЕЛЬНОЕ ДВИЖЕНИЕ Колебаниями в физике не только называют периодические или почти периодические движения тел, когда колеблющееся тело многократно повторяет одно и то же движение туда и обратно около определенного положения, а придают этому понятию более широкий смысл. Под колебаниями понимают всякий периодический или приблизительно периодический процесс, в котором значение той или иной физической величины повторяется точно или приблизительно точно через равные или приблизительно равные промежутки времени. Колебаться, или осциллировать, может груз на конце пружины, маятник, струны гитары или фортепиано, напряжение между обкладками конденсатора в контуре радиоприемника; колеблются атомы в молекулах, в твердом теле атомы совершают колебания относительно своих фиксированных положений в кристаллической решетке. Пауки обнаруживают попавшую в их сети добычу по дрожанию паутины, дома и мосты дрожат при проезде тяжелых грузовиков. Почти все материальные предметы колеблются после того, как на них подействует импульс силы. В зависимости от характера воздействия на колеблющуюся систему различают свободные колебания, вынужденные колебания, автоколебания, параметрические колебания. Свободными, или собственными, называются такие колебания, которые совершает выведенная из положения равновесия или получившая толчок система, будучи предоставлена самой себе. Если колеблющаяся система подвергается в процессе колебаний воздействию внешней периодически меняющейся силы, то она совершает колебания, называемые вынужденными. ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ Говоря о колебаниях тела в механике, мы подразумеваем повторяющееся движение по одной и той же траектории. Простейшим примером периодического движения служат колебания груза на конце пружины (пружинный маятник) (рис. 7.1). Если сдвинуть груз вправо, растягивая пружину, или влево, сжимая ее, то пружина действует на груз с силой, которая стремится вернуть его в положение равновесия; такую силу называют возвращающей. Для нашей системы возвращающая сила прямо пропорциональна расстоянию х, на которое сжимается или растягивается пружина (). Эта сила сообщает грузу ускорение, и груз приходит в положение равновесия. В положении равновесия сила, действующая на груз, уменьшается до нуля, а скорость его в этой точке максимальна. Возвратившись в устойчивое состояние, колебательная система не может сразу остановиться. В механических колебательных системах этому мешает инертность колеблющегося тела. Поэтому груз пройдет положение равновесия и будет двигаться далее, что приведет к сжатию пружины. Сила со стороны пружины в результате ее сжатия замедляет движение груза, и в некоторой точке его скорость будет равна нулю. Затем груз начинает двигаться в противоположном направлении и приходит в точку, откуда он начал движение. Затем весь этот процесс повторяется. Пружина, груз – пример колебательной системы. Расстояние х груза от положения равновесия до точки, в которой в данный момент времени находится груз, называют смещением. Любая колебательная система, в которой возвращающая сила прямо пропорциональна смещению, взятому с противоположным знаком (например, упругая сила ), совершает гармонические колебания. Такую силу называют квазиупругой, а саму систему часто называют гармоническим осциллятором. Рассмотрим уравнение, описывающее колебания, совершаемые системой в направлении оси X в отсутствие сил трения. Для этого воспользуемся вторым законом Ньютона. Ускорение, а так как , то ускорение можно получить, если два раза взять производную от координаты по времени. Тогда . Так в математике обозначается вторая производная. Теперь уравнение движения осциллятора можно записать в виде: . Введем обозначение, тогда уравнение запишется в следующем виде: , здесь – ускорение движущейся точки. Поскольку , – величина, зависящая от свойств системы, совершающей колебания. Решение этого уравнения имеет вид:
где и – произвольные постоянные, которые определяются из начальных условий. В качестве таковых можно, например, взять значение отклонения и скорости в момент времени. В справедливости (7.1) можно убедиться на простом опыте. Если к колеблющемуся грузу прикрепить карандаш и протягивать под ним с постоянной скоростью лист бумаги, то карандаш вычертит синусоиду. Таким образом, смещение изменяется со временем по закону косинуса или синуса. Движение механической системы, находящейся под действием квазиупругой силы, представляет собой гармоническое движение. На рис. 7.2 приведен график зависимости смещения частицы от времени. По горизонтальной оси отложено время , по вертикальной – смещение x. Так как косинус изменяется от -1 до +1, значения лежат в пределах от до . Величина наибольшего отклонения системы от положения равновесия называется амплитудой колебания. Амплитуда – постоянная положительная величина. Величина , стоящая под знаком косинуса, называется фазой колебания. Постоянная представляет собой значение фазы в момент и называется начальной фазой колебания. Значение начальной фазы определяется выбором начала отсчета времени. Поскольку косинус – периодическая функция с периодом , различные состояния частицы, совершающей гармонические колебания, повторяются через такой промежуток времени T, за который фаза колебания получает приращение . Этот промежуток времени называется периодом колебания. Его можно определить из условия: , отсюда . Число колебаний в единицу времени называется частотой колебаний. Очевидно, что частота связана с периодом колебаний соотношением . Из определения периода следует, что . Величину называют круговой или циклической частотой. Так как она зависит от свойств самой колеблющейся системы, то ее часто называют собственной частотой колебаний системы. Примером системы, совершающей гармонические колебания, является математический маятник. Математический маятник – это тело, подвешенное на невесомой и нерастяжимой нити, находящееся в поле тяжести Земли. Математический маятник представляет идеализированную модель, правильно описывающую реальный маятник лишь при определенных условиях. Реальный маятник можно считать математическим, если длина нити много больше размеров подвешенного на ней тела, масса нити ничтожна мала по сравнению с массой тела, а деформации нити настолько малы, что ими вообще можно пренебречь. Колебательную систему в данном случае образуют нить, присоединенное к ней тело и Земля, без которой эта система не могла бы служить маятником. При колебаниях математического маятника периодически изменяется угол отклонения маятника от положения равновесия. Период свободных гармонических колебаний математического маятника равен , где – длина нити, g – ускорение свободного падения. Таким образом, период свободных колебаний математического маятника не зависит от его массы, а определяется лишь длиной нити и ускорением свободного падения в том месте, где находится маятник. Гармонический осциллятор. Систему, описываемую уравнением , где , будем называть гармоническим осциллятором. Решение этого уравнения, как известно, имеет вид: . Следовательно, гармонический осциллятор представляет собой систему, которая совершает гармонические колебания около положения равновесия. Для гармонического осциллятора справедливы все результаты, полученные ранее для гармонического колебания. Рассмотрим и обсудим ещё дополнительно к ним два вопроса. Найдем импульс гармонического осциллятора. Продифференцируем выражение по t и, умножив полученный результат на массу осциллятора, получим: . (8.8) В каждом положении, характеризуемом отклонением “x”, осциллятор имеет некоторое значение ”p”. Чтобы найти ”p” как функцию ”x”, нужно исключить ”t” из написанных для ”p” и ”x” уравнений, Представим эти уравнения в виде: (8.9) Возведя эти выражения в квадрат и складывая, получим: . (8.10) Нарисуем график, показывающий зависимость ”p” импульса гармонического осциллятора от отклонения ”x” (рис. 8.6). Координатную плоскость (”p”, ”x”) принято называть фазовой плоскостью, а соответствующий график – фазовой траекторией. Фазовая траектория гармонического осциллятора представляет собой эллипс с полуосями “A” и ”A·m·w0”. Каждая точка фазовой траектории изображает состояние осциллятора для некоторого момента времени (т.е. его отклонение и импульс). С течением времени точка, изображающая состояние, перемещается по фазовой траектории, совершая за период колебания полный обход. Причем это перемещение совершается по часовой стрелке [а именно, если в некоторый момент времени t¢ x=A, p=0, то в следующий момент времени ”x” будет уменьшаться, а ”p” принимать все возрастающие по модулю отрицательные значения, т.е. движение изобразительной точки (т.е. точки изображающей состояние) будет происходить по часовой стрелке]. Найдем теперь площадь эллипса . Или . Здесь , где n0 – собственная частота осциллятора, являющаяся для данного осциллятора величиной постоянной. Следовательно, . Откуда . (8.11) Таким образом, полная энергия гармонического осциллятора пропорциональна площади эллипса, причем коэффициентом пропорциональности служит собственная частота осциллятора. 8.6. Малые колебания системы вблизи положения равновесия. Рассмотрим произвольную механическую систему, положение которой может быть задано с помощью одной величины “x”. Величиной ”x”, определяющей положение системы может быть угол, отсчитываемый от некоторой плоскости или расстояние, отсчитываемое вдоль заданной кривой. Потенциальная энергия такой системы будет функцией одной переменной ”x”: Ep=Ep(x). Выберем начало отсчета таким образом, чтобы в положении равновесия x=0. Тогда функция Ep(x) будет иметь минимум при x=0. Далее разложим функцию Ep(x) в ряд по степеням “x”, причем ограничимся случаем малых колебаний, поэтому высшими степенями “x” можно пренебречь. По формуле Маклорена: . (ввиду малости “x” остальными членами пренебрегаем) Так как E p(x) при x=0 имеет минимум, то , а . Обозначим E p(x) = b и , тогда . Это выражение идентично с выражением для потенциальной энергии системы, в которой действует квазиупругая сила (константу “b” можно положить равной 0). Сила, действующая на систему, может быть определена по формуле: . Получено с учетом, что работа совершается за счет убыли потенциальной энергии . Итак, потенциальная энергия системы при малых отклонениях от положения равновесия оказывается квадратичной функцией смещения, а сила, действующая на систему, имеет вид квазиупругой силы. Следовательно, при малых отклонениях от положения равновесия любая механическая система будет совершать колебания, близкие к гармоническим. 8.7. Математический маятник. ОПРЕДЕЛЕНИЕ: математическим маятником будем называть идеализированную систему, состоящую из невесомой и нерастяжимой нити, на которой подвешена масса, сосредоточенная в одной точке. Отклонение маятника от положения равновесия будет характеризоваться углом j (рис. 8.7). При отклонении маятника от положения равновесия возникает вращательный момент , он имеет такое направление, что стремится вернуть маятник в положение равновесия, поэтому моменту M и угловому смещению j нужно приписать разные знаки. Следовательно, . (8.12) Напишем теперь для маятника уравнение динамики вращательного движения (учитывая, что b – угловое ускорение равно , а ). Рассмотрим малые колебания () и введем величину , тогда получим Решением этого уравнения будет функция Следовательно, при малых колебаниях угловое отклонение математического маятника изменяется по гармоническому закону. Как следует из формулы , частота колебаний математического маятника зависит только от его длины и величины “g” и не зависит от массы маятника. Учитывая, что получим . (8.13) Физический маятник. ОПРЕДЕЛЕНИЕ: Физическим маятником будем называть твердое тело, способное совершать колебания вокруг неподвижной оси, не проходящей (не совпадающей) через его центр инерции. При отклонении маятника от положения равновесия на угол j возникает вращательный момент, стремящийся вернуть маятник в положение равновесия (рис. 8.8). Этот момент равен , где m – масса маятника; l – расстояние от точки подвеса «О» до центра инерции маятника «С». Обозначим J – момент инерции маятника относительно оси, проходящей через точку подвеса, тогда . В случае малых колебаний получим уравнение , где . Отсюда следует, что при малых отклонениях от положения равновесия физический маятник совершает гармонические колебания, частота которых зависит от массы маятника, момента инерции маятника относительно оси вращения и расстояния между осью вращения и центром инерции маятника. Период колебаний физического маятника будет определяться выражением: . (8.14) Сопоставляя это выражение с периодом колебаний математического маятника получаем, что математический маятник с длиной будет иметь такой период колебаний, как и данный физический маятник. Эта величина называется приведенной длиной физического маятника. ОПРЕДЕЛЕНИЕ: Приведенная длина физического маятника – это длина такого математического маятника, период колебаний которого совпадает с периодом колебаний данного физического маятника.
Затухающие колебания. При выводе уравнения гармонических колебаний считалось, что колеблющаяся точка находится под действием только квазиупругой силы. Во всякой реальной колебательной системе всегда имеются силы сопротивления (например, это может быть сила трения в точке подвеса, сопротивление среды, в которой совершаются колебания). Действие этих сил приводит к тому, что энергия колеблющейся системы (или точки) будет непрерывно убывать. Эта убыль энергии будет равна работе против сил трения и сопротивления. Т.к. полная энергия колебаний пропорциональна квадрату амплитуды , то наличие сил трения и сопротивления приведет и к непрерывному убыванию амплитуды колебаний. Если убыль энергии не восполняется за счет работы внешних сил, то колебания будут затухать (и носят название затухающих). Итак, затухание колебаний в любой колебательной системе (механической, электрической и т.п.) обусловлено потерями энергии в этой системе. Потери энергии колебаний в механических колебательных системах происходят из-за трения (внешнего и внутреннего) и излучения упругих волн в окружающую среду; в электрических – из-за наличия активного сопротивления проводников и т.п. Рассмотрим свободные (или собственные) колебания. Это значит, что система, будучи выведена из положения равновесия в результате внешнего воздействия, в дальнейшем предоставлена самой себе и находится под воздействием только квазиупругой силы F=-kx и силы сопротивления среды, значит она будет совершать затухающие колебания вдоль оси “x”. Ограничимся рассмотрением малых колебаний, тогда и скорость (v) системы будет малой, а при небольших скоростях сила сопротивления пропорциональна скорости: , где r – коэффициент сопротивления среды. Знак минус (“-”), т.к. и имеют противоположные направления. Под действием сил F и f тело приобретает ускорение “a”, и для колеблющегося тела уравнение II-закона Ньютона имеет вид: или . Обозначим ;, тогда
Здесь w0 – та частота, с которой совершались бы свободные колебания системы при отсутствии сопротивления среды (т.е. при r = 0). Эта частота называется собственной частотой колебаний системы. b – коэффициент затухания колебаний (зависит от свойств данной системы и среды). Наличие сопротивления среды приводит к тому, что амплитуда колебаний со временем будет уменьшаться. Поэтому будем искать решение уравнения (8.15) в виде: где a(t) – некоторая функция времени. Продифференцируем это выражение по времени и найдем и : После подстановки этих выражений в уравнение (8.15) и несложных преобразований придем к следующему соотношению: . Для того чтобы уравнение удовлетворялось при любых значения “t”, необходимо равенство нулю коэффициентов при “ sin ” и ” cos ”. Т.е. приходим к двум следующим уравнениям:
Первое уравнение представим в виде: или . После интегрирования получим , где – постоянная интегрирования. После потенцирования найденного выражения получим . Видно, что , а . Подставим эти значения в (8.17), получим . Отсюда . При w0 > b, величина w будет вещественной и тогда решение дифференциального уравнения может быть представлено в виде . Таким образом, при не слишком большом затухании колебания описываются функцией . График этой функции показан на рисунке 8.9. Пунктирными линиями показаны пределы, в которых находится смещение колеблющейся точки. Движение такой системы можно рассматривать как гармоническое колебание с частотой w и амплитудой, изменяющееся по закону Верхняя из пунктирных кривых дает график функции a(t), причем величина a0 представляет собой амплитуду в начальный момент времени. Начальное смещение x0 зависит, кроме a0, также от начальной фазы a: . Скорость затухания колебаний определяется величиной , которую называют коэффициентом затухания. Найдем время t, за которое амплитуда колебаний уменьшается в “e” раз. По определению . Следовательно, коэффициент затухания равен обратной величине того промежутка времени, за который амплитуда колебаний уменьшается в “e” раз. С учетом того, что , а период затухающих колебаний можно определить как . При незначительном сопротивлении среды период колебаний практически равен . С ростом коэффициента затухания период колебаний увеличивается. Для характеристики колебательной системы (а именно: убывания амплитуды колебаний в зависимости от числа колебаний) вводится величина, называемая логарифмическим декрементом затухания (l). Отношение значений амплитуд, соответствующих моментам времени, отличающимся на период равно
, т.е. . Т.к. , то . Отсюда следует, что логарифмический декремент затухания l зависит от свойств данной системы и среды. Выразим и запишем закон убывания амплитуды в виде. За время t, за которое амплитуда колебаний уменьшится в “e” раз система совершит колебаний. Из условия получаем . Поэтому . Следовательно, логарифмический декремент затухания равен обратной величине числа колебаний, совершаемых системой за то время, за которое амплитуда уменьшается в “e” раз (l – безразмерная величина). Для характеристики колебательной системы также часто употребляется величина , называемая добротностью колебательной системы. Как видно из определения, добротность пропорциональна числу колебаний N, совершаемых системой за время t, за которое амплитуда колебаний убывает в “e” раз. Как известно, энергия колеблющейся системы пропорциональна квадрату амплитуды. Поэтому энергия системы при затухающих колебаниях убывает со временем по закону , где E 0 – значение энергии при t = 0. Продифференцировав это выражение по “t”, получим скорость возрастания энергии . Изменив знак на обратный, найдем скорость убывания энергии: . Если энергия мало изменяется за время равное периоду колебаний, то убыль энергии за период будет равна . С учетом и |
|||||||||||||||||||||||
| Поделиться: |
Познавательные статьи:
Последнее изменение этой страницы: 2021-05-12; просмотров: 539; Нарушение авторского права страницы; Мы поможем в написании вашей работы!
infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.14.246.52 (0.013 с.)