![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Скорость и ускорение при гармоническом колебании. Энергия гармонического осциллятора.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Скорость и ускорение при гармоническом колебании. Энергия гармонического осциллятора.
Скорость и ускорение при гармоническом колебании.
Скорость опережает смещение по фазе на
Сдвиг фаз между Сила. Силы, которые подчиняются закону упругой силы, но по природе своей не являются упругими называются квазиупругими. Гармонические колебания – это колебания, которые происходят под действием квазиупругой силы, то есть силы, пропорциональной смещению. 6. Энергия гармонического осциллятора. (кинетическая Энергия, Т + потенциальная энергия, П = полной энергии, Е). Пусть
Тогда
- полная энергия механического осциллятора не зависит от Выводы: Кинетическая и потенциальная энергии по отдельности зависят от времени. Максимальная кинетическая энергия равна максимальной потенциальной энергии и равна полной энергии. Средняя кинетическая энергия равна средней потенциальной энергии и равна половине полной энергии. Полная энергия не зависит от времени и пропорциональна квадрату амплитуды. Лекция 8. Сложение колебаний. Сложение колебаний – задача сложная и часто пользуются искусственными приемами для ее решения. Представим гармоническое колебание в виде вектора амплитуды.
В момент 1. Сложение гармонических колебаний одного направления и одной частоты.
Изобразим их графически:
Векторы
То есть результирующее колебание гармоническое, имеет ту же частоту, что и слагаемые колебания. Амплитуду находим из начальных условий по формуле
2. Биения. Рассмотрим сложение колебаний одинаковой амплитуды и близких частот
Если изобразить эти колебания с помощью вектора амплитуды, то они вращаются с разными угловыми скоростями, и всегда будет момент, когда
=
- уравнение биений. Первый множитель медленно меняется, второй – быстро. Уравнение можно представить в виде Сравним с уравнением гармонических колебаний
Уравнение биений – негармоническое, но
Поэтому биения – приблизительно гармонические колебания с медленно меняющейся амплитудой,
Амплитуда ограничивает Метод биений широко применяется на практике. Основан на сравнении искомой частоты с частотой эталона. Метод биений – это один из наиболее точных методов измерения частот, емкостей, индуктивностей. Применяют для настройки музыкальных инструментов. Скорость и ускорение при гармоническом колебании Примеры проявления резонансных явлений в живых организмах. В лаборатории электроакустики в Марселе испытывали генератор, создававший акустические волны с частотой 7 Гц (инфразвук), люди испытывали сильные внутренние боли, нарушение координации движений и зрения. Оказалось, что инфразвук действует на вестибулярный аппарат, собственная частота которого 2…20 Гц; он переходит в резонансные колебания, нарушающие деятельность вестибулярного аппарата. Инфразвук также вызывает вынужденные колебания различных органов, каждый из которых обладает собственной частотой. Некоторые из них, такие как печень, почки, сами по себе не совершают колебательных движений, но под действием внешней периодической силы могут войти с ней в резонанс. Медики обратили внимание на опасный резонанс брюшной полости (4…8 Гц). Резонансные явления раздражают рецепторы, передающие информацию в нервные центры. Таким образом, создаются рефлекторные реакции организма на раздражитель. Это сопровождается ощущением боли, неприятными ощущениями, затруднением дыхания.
Особенно вредны резонансные явления для сердца. Это приводит к расширению кровеносных сосудов и кровоизлияниям. Если резонансные колебания находятся в противофазе, то возможны торможение кровообращения, остановка сердца. Некоторые исследователи указывают на психическое действие инфразвука. У облученных им людей поражаются все виды интеллектуальной деятельности, появляется чувство тревоги, страха. Такие же явления имеют место и у животных. (Источники – двигатели, компрессоры, электродойки.) Отрицательное воздействие на молокоотдачу и многие физиологические функции сельскохозяйственных животных. КОЛЕБАТЕЛЬНОЕ ДВИЖЕНИЕ Колебаниями в физике не только называют периодические или почти периодические движения тел, когда колеблющееся тело многократно повторяет одно и то же движение туда и обратно около определенного положения, а придают этому понятию более широкий смысл. Под колебаниями понимают всякий периодический или приблизительно периодический процесс, в котором значение той или иной физической величины повторяется точно или приблизительно точно через равные или приблизительно равные промежутки времени. Колебаться, или осциллировать, может груз на конце пружины, маятник, струны гитары или фортепиано, напряжение между обкладками конденсатора в контуре радиоприемника; колеблются атомы в молекулах, в твердом теле атомы совершают колебания относительно своих фиксированных положений в кристаллической решетке. Пауки обнаруживают попавшую в их сети добычу по дрожанию паутины, дома и мосты дрожат при проезде тяжелых грузовиков. Почти все материальные предметы колеблются после того, как на них подействует импульс силы. В зависимости от характера воздействия на колеблющуюся систему различают свободные колебания, вынужденные колебания, автоколебания, параметрические колебания. Свободными, или собственными, называются такие колебания, которые совершает выведенная из положения равновесия или получившая толчок система, будучи предоставлена самой себе. Если колеблющаяся система подвергается в процессе колебаний воздействию внешней периодически меняющейся силы, то она совершает колебания, называемые вынужденными. ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ
Говоря о колебаниях тела в механике, мы подразумеваем повторяющееся движение по одной и той же траектории. Простейшим примером периодического движения служат колебания груза на конце пружины (пружинный маятник) (рис. 7.1). Если сдвинуть груз вправо, растягивая пружину, или влево, сжимая ее, то пружина действует на груз с силой, которая стремится вернуть его в положение равновесия; такую силу называют возвращающей. Для нашей системы возвращающая сила прямо пропорциональна расстоянию х, на которое сжимается или растягивается пружина (
Любая колебательная система, в которой возвращающая сила прямо пропорциональна смещению, взятому с противоположным знаком (например, упругая сила Рассмотрим уравнение, описывающее колебания, совершаемые системой в направлении оси X в отсутствие сил трения. Для этого воспользуемся вторым законом Ньютона. Ускорение, а так как
Введем обозначение, тогда уравнение запишется в следующем виде:
здесь – ускорение движущейся точки. Поскольку
где Таким образом, смещение На рис. 7.2 приведен график зависимости смещения частицы от времени. По горизонтальной оси отложено время
Поскольку косинус – периодическая функция с периодом
отсюда
Число колебаний в единицу времени называется частотой колебаний. Очевидно, что частота связана с периодом колебаний соотношением
Из определения периода следует, что Примером системы, совершающей гармонические колебания, является математический маятник. Математический маятник – это тело, подвешенное на невесомой и нерастяжимой нити, находящееся в поле тяжести Земли. Математический маятник представляет идеализированную модель, правильно описывающую реальный маятник лишь при определенных условиях. Реальный маятник можно считать математическим, если длина нити много больше размеров подвешенного на ней тела, масса нити ничтожна мала по сравнению с массой тела, а деформации нити настолько малы, что ими вообще можно пренебречь. Колебательную систему в данном случае образуют нить, присоединенное к ней тело и Земля, без которой эта система не могла бы служить маятником. При колебаниях математического маятника периодически изменяется угол отклонения маятника от положения равновесия. Период свободных гармонических колебаний математического маятника равен
где Гармонический осциллятор. Систему, описываемую уравнением
Следовательно, гармонический осциллятор представляет собой систему, которая совершает гармонические колебания около положения равновесия. Для гармонического осциллятора справедливы все результаты, полученные ранее для гармонического колебания. Рассмотрим и обсудим ещё дополнительно к ним два вопроса. Найдем импульс гармонического осциллятора. Продифференцируем выражение
В каждом положении, характеризуемом отклонением “x”, осциллятор имеет некоторое значение ”p”. Чтобы найти ”p” как функцию ”x”, нужно исключить ”t” из написанных для ”p” и ”x” уравнений, Представим эти уравнения в виде:
Возведя эти выражения в квадрат и складывая, получим:
Найдем теперь площадь эллипса
Здесь Следовательно,
Таким образом, полная энергия гармонического осциллятора пропорциональна площади эллипса, причем коэффициентом пропорциональности служит собственная частота осциллятора. 8.6. Малые колебания системы вблизи положения равновесия. Рассмотрим произвольную механическую систему, положение которой может быть задано с помощью одной величины “x”. Величиной ”x”, определяющей положение системы может быть угол, отсчитываемый от некоторой плоскости или расстояние, отсчитываемое вдоль заданной кривой. Потенциальная энергия такой системы будет функцией одной переменной ”x”: Ep=Ep(x). Выберем начало отсчета таким образом, чтобы в положении равновесия x=0. Тогда функция Ep(x) будет иметь минимум при x=0. Далее разложим функцию Ep(x) в ряд по степеням “x”, причем ограничимся случаем малых колебаний, поэтому высшими степенями “x” можно пренебречь. По формуле Маклорена:
(ввиду малости “x” остальными членами пренебрегаем) Так как E p(x) при x=0 имеет минимум, то Это выражение идентично с выражением для потенциальной энергии системы, в которой действует квазиупругая сила (константу “b” можно положить равной 0). Сила, действующая на систему, может быть определена по формуле: Итак, потенциальная энергия системы при малых отклонениях от положения равновесия оказывается квадратичной функцией смещения, а сила, действующая на систему, имеет вид квазиупругой силы. Следовательно, при малых отклонениях от положения равновесия любая механическая система будет совершать колебания, близкие к гармоническим. 8.7. Математический маятник. ОПРЕДЕЛЕНИЕ: математическим маятником будем называть идеализированную систему, состоящую из невесомой и нерастяжимой нити, на которой подвешена масса, сосредоточенная в одной точке. Отклонение маятника от положения равновесия будет характеризоваться углом j (рис. 8.7). При отклонении маятника от положения равновесия возникает вращательный момент Следовательно,
Рассмотрим малые колебания ( Решением этого уравнения будет функция Следовательно, при малых колебаниях угловое отклонение математического маятника изменяется по гармоническому закону. Как следует из формулы
Физический маятник.
При отклонении маятника от положения равновесия на угол j возникает вращательный момент, стремящийся вернуть маятник в положение равновесия (рис. 8.8). Этот момент равен
где m – масса маятника; l – расстояние от точки подвеса «О» до центра инерции маятника «С». Обозначим J – момент инерции маятника относительно оси, проходящей через точку подвеса, тогда
где Период колебаний физического маятника будет определяться выражением:
Сопоставляя это выражение с периодом колебаний математического маятника ОПРЕДЕЛЕНИЕ: Приведенная длина физического маятника – это длина такого математического маятника, период колебаний которого совпадает с периодом колебаний данного физического маятника.
Затухающие колебания. При выводе уравнения гармонических колебаний считалось, что колеблющаяся точка находится под действием только квазиупругой силы. Во всякой реальной колебательной системе всегда имеются силы сопротивления (например, это может быть сила трения в точке подвеса, сопротивление среды, в которой совершаются колебания). Действие этих сил приводит к тому, что энергия колеблющейся системы (или точки) будет непрерывно убывать. Эта убыль энергии будет равна работе против сил трения и сопротивления. Т.к. полная энергия колебаний пропорциональна квадрату амплитуды Итак, затухание колебаний в любой колебательной системе (механической, электрической и т.п.) обусловлено потерями энергии в этой системе. Потери энергии колебаний в механических колебательных системах происходят из-за трения (внешнего и внутреннего) и излучения упругих волн в окружающую среду; в электрических – из-за наличия активного сопротивления проводников и т.п. Рассмотрим свободные (или собственные) колебания. Это значит, что система, будучи выведена из положения равновесия в результате внешнего воздействия, в дальнейшем предоставлена самой себе и находится под воздействием только квазиупругой силы F=-kx и силы сопротивления среды, значит она будет совершать затухающие колебания вдоль оси “x”. Ограничимся рассмотрением малых колебаний, тогда и скорость (v) системы будет малой, а при небольших скоростях сила сопротивления пропорциональна скорости:
где r – коэффициент сопротивления среды. Знак минус (“-”), т.к. Под действием сил F и f тело приобретает ускорение “a”, и для колеблющегося тела уравнение II-закона Ньютона имеет вид:
Обозначим
Здесь w0 – та частота, с которой совершались бы свободные колебания системы при отсутствии сопротивления среды (т.е. при r = 0). Эта частота называется собственной частотой колебаний системы. b – коэффициент затухания колебаний (зависит от свойств данной системы и среды). Наличие сопротивления среды приводит к тому, что амплитуда колебаний со временем будет уменьшаться. Поэтому будем искать решение уравнения (8.15) в виде: где a(t) – некоторая функция времени. Продифференцируем это выражение по времени и найдем После подстановки этих выражений в уравнение (8.15) и несложных преобразований придем к следующему соотношению:
Для того чтобы уравнение удовлетворялось при любых значения “t”, необходимо равенство нулю коэффициентов при “ sin ” и ” cos ”. Т.е. приходим к двум следующим уравнениям:
Первое уравнение представим в виде:
После интегрирования получим
Отсюда При w0 > b, величина w будет вещественной и тогда решение дифференциального уравнения
Таким образом, при не слишком большом затухании
График этой функции показан на рисунке 8.9. Пунктирными линиями показаны пределы, в которых находится смещение колеблющейся точки. Движение такой системы можно рассматривать как гармоническое колебание с частотой w и амплитудой, изменяющееся по закону Скорость затухания колебаний определяется величиной Следовательно, коэффициент затухания равен обратной величине того промежутка времени, за который амплитуда колебаний уменьшается в “e” раз. С учетом того, что
При незначительном сопротивлении среды Для характеристики колебательной системы (а именно: убывания амплитуды колебаний в зависимости от числа колебаний) вводится величина, называемая логарифмическим декрементом затухания (l). Отношение значений амплитуд, соответствующих моментам времени, отличающимся на период равно
Следовательно, логарифмический декремент затухания равен обратной Для характеристики колебательной системы также часто употребляется величина Как известно, энергия колеблющейся системы пропорциональна квадрату амплитуды. Поэтому энергия системы при затухающих колебаниях убывает со временем по закону
где E 0 – значение энергии при t = 0. Продифференцировав это выражение по “t”, получим скорость возрастания энергии
Изменив знак на обратный, найдем скорость убывания энергии: Если энергия мало изменяется за время равное периоду колебаний, то убыль энергии за период будет равна С учетом |
||||||||||||||||||||||||||||
| Поделиться: |
Познавательные статьи:
Последнее изменение этой страницы: 2021-05-12; просмотров: 545; Нарушение авторского права страницы; Мы поможем в написании вашей работы!
infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.134.247.163 (0.013 с.)