Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Форми інфінітива та їх комунікативні значенняСодержание книги
Поиск на нашем сайте
Функції інфінітива в реченні
The Infinitive Constructions Інфінітивні звороти та їх функції у реченні. Складний додаток /Complex Object/ Складнопідрядне додаткове речення за своїм значенням адекватне звороту “складний додаток з інфінітивом”.
Зворот “складний додаток” вживається після наступних дієслів і має таку структуру:
Наприклад:
Складний підмет /Complex Subject/ Складно-підрядне речення з головним реченням, вираженим безособовим зворотом типу:
можна замінити простим реченням із “складним підметом”.
Інфінітив в реченнях із “ складним підметом ” може вживатись в різних формах.
“ Складний підмет ” вживається, коли: 1. присудок виражений наступними дієсловами в Passive Voice:
2. присудок виражений наступними дієсловами в Active Voice:
3. присудок виражений наступними прикметниками:
Прийменниковий інфінітивний комплекс (The for-to-Infinitive – Construction) Інфінітивний комплекс може вводитися прийменником for, і називається прийменниковим інфінітивним комплексом.
Функції прийменникового інфінітивного комплексу
Text A. The Theory of Equations Pre-text Exercises 1. Before reading the text, read the following questions. Do you know the answers already? Discuss them briefly with other students to see if they know the answers. The questions will help to give a purpose to your reading: – Can you name all the existent number systems in English? – Can you word mathematical formulae? – Do you know the names of the distinguished mathematicians who contributed to the theory of equations?
2. Learn to recognize international words: theory, history, progress, civilization, maths, evolution, review, system, complex, natural, negative, quadratic, positive, rational, irrational, real, prevail, cubic, fictitious, problem, product, symbol, term, theorem, coefficient, fundamental, algebra. Read and translate the text: The Theory of Equations History shows the necessity for the invention of new numbers in the orderly progress of civilization and in the evolution of maths. We must review briefly the growth of the number system in the light of the theory of equations and see why the complex number system need not be enlarged further. Suppose we decide that we want all polynomial equations to have roots. Now let us imagine that we have no numbers in our possession except the natural numbers. Then a simple linear equation like has no root. In order to remedy this condition, we invent fractions. But a simple linear equation, like has no root even among the fractions. Hence we invent negative numbers. A simple quadratic equation like has no root among all the (positive and negative) rational numbers, therefore we invent the irrational numbers which together with the rational numbers complete the system of real numbers. However, a simple quadratic equation like has no root among all the real numbers, hence, we invent the pure imaginary numbers. But a simple quadratic equation like has no roots among either the real or pure imaginary numbers; therefore we invent the complex numbers. The story of , the imaginary unit, and of , the complex number, originated in the logical development of algebraic theory. The word "imaginary" reflects the elusive nature of the concept for distinguished mathematicians who lived centuries ago. Early consideration of the square root of a negative number brought unvarying rejection. It seemed obvious that a negative number is not a square, and hence it was concluded that such square roots had no meaning. This attitude prevailed for a long time. G. Cardano (1545) is credited with some progress in introducing complex numbers in his solution of the cubic equation, even though he regarded them as "fictitious". He is credited also with the first use of the square root of a negative number in solving the now-famous problem, "Divide 10 into two parts such that the product... is 40", which Cardano first says is "manifestly impossible"; but then he goes on to say, in a properly adventurous spirit, "Nevertheless, we will operate." Thus he found and and showed that they did, indeed, have the sum of 10 and a product of 40. Cardano concludes by saying that these quantities are "truly sophisticated" and that to continue working with them is "as subtle as it is useless". Cardano did not use the symbol , his designation was " ", that is, "radix minus", for the square root of a negative number. R. Descartes (1637) contributed the terms "real" and "imaginary". L. Euler (1748) used " i " for and K. F. Gauss (1832) introduced the term "complex number". He made significant contributions to the understanding of complex numbers through graphical representation and defined complex numbers as ordered pairs of real numbers for which , and so forth. Now, we may well expect that there may be some equation of degree 3 or higher which has no roots even in the entire system of complex numbers. That this is not the case was known to K. F. Gauss, who proved in 1799 the following theorem, the truth of which had long been expected: Every algebraic equation of degree n withcoefficient in the complex number system has a root (and hence n roots) among the complex numbers, later Gauss published three more proofs of the theorem. It was he who called it "fundamental theorem of algebra". Much of the work on complex number theory is Gauss'. He was one of the first to represent complex numbers as points in a plane. Actually, Gauss gave four proofs for the theorem, the last when he was seventy; in the first three proofs, he assumes, the coefficients of the polynomial equation are real, but in the fourth proof the coefficients are any complex numbers. We can be sure now that for the purpose of solving polynomial equations we do not need to extend the number system any further. Active Vocabulary
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-08; просмотров: 267; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.36.106 (0.006 с.) |