Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Почему для HEARSAY-II выбрана такая архитектураСодержание книги
Поиск на нашем сайте
Приступая к разработке системы, ее создатели прекрасно понимали, что с каждым уровнем анализа связана отдельная отрасль знаний — анализ звуковых сигналов, фонетика, лексический анализ, грамматика, семантика, ораторское искусство. Ни одна из этих отраслей по отдельности не способна предоставить достаточно информации для того, чтобы решить проблему. Представим, например, что, пользуясь методами обработки акустических сигналов, мы смогли разложить исходный звук на фонемы. Но без дополнительной информации все равно не удастся выделить смысл выражений, подобных следующим: l scream (я восклицаю) и ice cream (мороженое) или please let us know (пожалуйста, дайте нам знать) и please lettuce no (пожалуйста,- без салата). Таким образом, хотя каждый отдельный вид (набор) знаний играет существенную роль в решении проблемы и каждый из них может быть представлен в программе более или менее независимо от остальных, автоматическое распознавание речи требует использования всех этих знаний совместно. При распознавании речи исследователям приходится сталкиваться еще с одной проблемой, которую также можно отнести к числу ключевых, — проблемой неопределенности. Она проявляется на всех уровнях представления информации: данные неполные и зашумлены; отсутствует однозначное соответствие между данными на соседних уровнях; примером может служить соответствие между уровнями фонем и лексических единиц при анализе фраз / scream и ice cream; важную роль играют лингвистический и смысловой контексты; интерпретация соседних элементов делает более или менее вероятными разные варианты интерпретации текущего сегмента. Более традиционные подходы к распознаванию речи основаны на использовании статистических моделей из теории передачи информации для определения корреляционной связи между сегментами. Подход, базирующийся на знаниях, потребовал существенного пересмотра методов обработки неопределенности. В работе [Erman et al., 1980] перечислены следующие требования, которым должна удовлетворять эффективно работающая система распознавания речи, основанная на знаниях. (1) Из всех возможных последовательностей операций (частных решений) хотя бы одна должна приводить к корректной интерпретации. (2) Процедура анализа имеющихся вариантов интерпретации должна давать корректному варианту более высокую оценку, чем другим конкурирующим вариантам. Другими словами, правильная интерпретация с учетом произношения должна быть оценена выше, чем другие варианты интерпретации, не учитывающие особенностей индивидуальной дикции. (3) Вычислительные ресурсы (память и время вычислений), необходимые для отыскания правильной интерпретации, не должны превышать определенный порог. Система распознавания, которая через пару дней выдаст результат, пусть и правильный, и потребует памяти объемом несколько гигабайт, вряд ли кому-нибудь будет нужна. В приведенном списке первое и третье требования в определенной мере противоречат друг другу. Для того чтобы корректное решение изначально присутствовало в пространстве гипотез, на стадии формирования гипотез поневоле приходится быть довольно расточительным, что при большом словаре может привести к комбинаторному взрыву элементов решений. Выход может быть найден только при использовании чрезвычайно остроумных эвристик. Таким образом, важнейшей предпосылкой достижения успеха в создании такой системы является разработка подходящей процедуры оценки вариантов (второе из перечисленных выше требований). Использование источников знаний в HEARSAY-II Для генерации, комбинирования и развития гипотез интерпретации в системе HEARSAY-II используется несколько источников знаний. Созданные гипотезы (интерпретации) разного уровня абстракции сохраняются на доске объявлений. Каждый источник знаний можно считать в первом приближении набором пар "условие-действие", хотя они могут быть реализованы и в форме, отличной от порождающих правил (например, условия и действия могут быть в действительности произвольными процедурами). Поток управления в этой системе также отличается от потока управления в продукционных системах. Вместо того чтобы в каждом цикле интерпретатор анализировал выполнение условий, специфицированных в источниках знаний, источники знаний загодя объявляют об активизированных в них условиях, извещая, какой вид модификации данных будет влиять на выполнение этих условий. В результате система управляется прерываниями, а этот режим управления значительно эффективнее, чем режим циклического просмотра состояния, который является основным для продукционных экспертных систем. Такой режим напоминает использование демонов во фреймовых системах, где поток управления регулируется обновлением данных. Источники знаний связываются с уровнями доски объявлений следующим образом. Условия, специфицированные в источнике знаний, будут удовлетворяться в результате обновления данных на определенном уровне доски объявлений. Источник знаний также может записывать данные в определенный уровень, причем не обязательно в тот же, который влияет на выполнение условий. Большинство источников знаний в системе HEARSAY-II организовано так, что они распознают данные на определенном уровне лингвистического анализа, а выполняемые ими операции относятся к следующему по порядку уровню. Например, некоторый источник активизируется данными на силлабическом уровне и формирует лексическую гипотезу на уровне слов. В несколько упрощенном виде архитектура системы HEARSAY-II представлена на рис. 18.1. Стрелки, направленные от уровней доски объявлений к источникам знаний, указывают, данные какого уровня изменяют выполнение условий, специфицированных в источнике знаний. Стрелки в обратном направлении указывают, на какой уровень помещает данные тот или иной источник знаний. Ответвление от стрелки "действия" источника знаний к монитору доски объявлений означает, что изменение данных, выполненное одним источником знаний, фиксируется в мониторе и затем используется планировщиком для активизации другого источника знаний.
Рис. 18.1. Упрощенная структурная схема системы HEARSAY-II Самое главное отличие архитектуры с доской объявлений от всех, рассмотренных ранее, заключается в том, что такая система не диктует проектировщику определенный режим управления знаниями в системе, например нисходящую или восходящую стратегию построения рассуждений. Например, в той области, для которой создавалась система HEARSAY-II, можно применять и нисходящую стратегию — строить гипотезы о словах, а затем искать подтверждения этим гипотезам на уровне фонем, а можно и восходящую — собирать гипотезы о фонемах и формировать по ним гипотезы о словах. Какой источник знаний будет активизирован, определяется монитором и планировщиком системы, а это решение можно сделать или независимым от предметной области, т.е. от соответствующих источников знаний, или зависимым от них. Здесь архитектура системы никак не связывает разработчика в выборе проектного решения
|
||||
Последнее изменение этой страницы: 2016-04-07; просмотров: 287; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.86.6 (0.01 с.) |