Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Представляет интерес сравнение формализма Перла и теории Демпстера — Шефера.

Поиск

В системе Перла нужно присваивать априорные оценки доверия отдельным событиям, а в теории Демпстера — Шефера оценка распространяется на всю область анализа.

В системе Перла определение функции ВЕL(h1) через P(h1) и BEL'(h1) через P(h, | E) позволяет более корректно обосновать эти функции на основе выводов теории вероятностей, чего нельзя сказать о правилах комбинирования Демпстера, с чем согласился и Шефер в работе [Shafer, 1976].

Йен [Yen, 1986] обратил внимание на то, что в формализме Перла теряется понятие доверительного интервала, внутри которого могут изменяться вероятностные оценки. Доверительные интервалы очень удобно использовать в экспертных системах, поскольку они позволяют судить о "качестве" гипотез, возможности их совершенствования и ассоциированной степени неопределенности.

В своей книге [Pearl, 1988] Перл совершенно справедливо отмечает, что теория Демпстера—Шефера основана на неполной вероятностной модели, а потому может дать только частичные ответы. Вместо того чтобы непосредственно оценить, насколько близка гипотеза к тому, чтобы ее можно было считать истинной, эта теория говорит, как сильно полученное свидетельство должно продвинуть нас к убеждению, что данная гипотеза истинна. В этом отношении теория Демпстера—Шефера значительно больше напоминает объективистские методы проверки значимости с использованием доверительных интервалов, чем субъективистские методы на основе Байесовского подхода [Neapolitan, 1990].

Но, несмотря на отмеченные различия, в обоих подходах есть много общего, почему мы и рассматриваем их совместно в рамках одной главы. Ассоциирование свидетельств с подмножествами гипотез в рамках метода Перла не противоречит отображению одного множества на другое в теории Демпстера—Шефера. Оба варианта можно рассматривать как использование метафоры "массового распределения" в том смысле, что основное внимание уделяется распределению полученных свидетельств в контексте структурированного пространства альтернатив, причем оба метода позволяют вычислять значения функции доверия на основе простых вероятностных оценок.

Сравнение методов неточных рассуждений

В работе [Horvitz et al, 1986] предлагается обобщенная модель, которая может служить в качестве оболочки для сравнения альтернативных формализмов оценок доверия к гипотезам. Описанная модель появилась в ходе обширной дискуссии, призванной пролить свет на проблемы неточных рассуждений, которые проявились в процессе эксплуатации системы MYCIN. Авторы этой работы, основываясь на работах Кокса [Сох, 1946], выделили набор свойств, которыми должны обладать параметры, предлагаемые в качестве меры доверия. Идея состояла в том, чтобы обеспечить некоторый единый теоретико-вероятностный базис для сравнения альтернативных формализмов.

Предлагаемые Горвицем свойства перечислены ниже.

(Р1) Ясность. Высказывания должны быть сформулированы настолько четко, чтобы всегда можно было выполнить проверку истинности условий в них.

(Р2) Скалярная непрерывность. Степень доверия к высказыванию должна выражаться действительным числом, значение которого может непрерывно изменяться в диапазоне от полного доверия к истинности до полного отрицания истинности.

(РЗ) Полнота. Должна быть обеспечена возможность приписать значение степени доверия любому правильно сформулированному высказыванию.

(Р4) Зависимость от контекста. Степень доверия к одному высказыванию может зависеть от степени доверия к другим высказываниям.

(Р5) Гипотетическая условность. Должна существовать функция, которая позволяла бы вычислить оценку доверия к совокупности высказываний по степени доверия к одному из высказываний и оценкам доверия к другим высказываниям в предположении, что первое истинно.

(Р6) Комплементарность. Оценка доверия к отрицанию высказывания должна быть монотонно убывающей функцией от оценки доверия к самому высказыванию.

(Р7) Совместимость. Высказывания с одинаковыми значениями истинности должны иметь одинаковые оценки доверия.

Можно показать, что аксиомы теории вероятности являются логическим следствием из этих аксиом, т.е. существует непрерывная монотонная функция Ф, такая, что

(А2) Ф(TRUЕ|е)=1;

(А4) Ф (QR |e)=Ф(Q|e)Ф(R | е).

Семантические свойства оценки доверия (Р1)-(Р7) могут служить базисом для сравнения таких формализмов, которые сложно сравнивать по их аксиоматике. Этот же перечень свойств может помочь исследователям выделить такие области, в которых применение теории вероятностей в качестве базиса для оценки степени доверия не подходит. И наконец, этот перечень может помочь определить ситуации, в которых различные формализмы действительно вступают в противоречие с аксиомами теории вероятностей.

Для классификации подходов к оценке степени доверия, не основанных на теории вероятностей, Горвиц использует четыре категории:

(С1) обобщение — определенные свойства ослабляются или исчезают вовсе;

(С2) специализация — определенные свойства усиливаются или добавляются новые;

(СЗ) внутренняя несовместимость — (С2) приводит к тому, что набор свойств становится несовместимым;

(С4) подстановка — изменения свойств нельзя отнести к категориям (С1) или (С2).

Для демонстрации практического использования предлагаемой модели Горвиц сравнивает формализмы нечеткой логики (см., например, [Zadeh, 1981]), теории Демпстера — Шефера [Shafer, 1976] и коэффициентов уверенности в системе MYCIN с теорией вероятностей.

Для нечетких логик характерно ослабление свойства (Р1), поскольку в них предполагается назначение оценки доверия расплывчатым высказываниям. Формализм нечеткой логики может быть отнесен к категории (С 1). Расплывчатость представления об истинности в нечетких логиках несовместима со свойством гипотетической условности (Р5). Формализм нечеткой логики оценивает доверие к совокупности высказываний по минимальному значению оценки для компонентов, что противоречит аксиоме (А4). В результате Горвиц относит эти формализмы к категории (С4).

Наиболее существенным отличием теории ДемпстераШефера от классической теории вероятностей Горвиц считает ослабление свойства полноты (РЗ). Эта теория позволяет утверждать, что определенные априорные и условные вероятности не могут быть оценены, и в ней вводится понятие отношения совместимости между допущениями. Это приводит к нарушению свойств скалярной непрерывности комплементарноети (Р6). В результате Горвиц относит эту теорию к категории обобщения теории вероятностей (С1).

В использованной в MYCIN модели на основе коэффициентов уверенности применяются более строгие предположения, чем в вероятностной модели оценки доверия, а потому ее следовало бы отнести к категории (С1). Но мы уже отмечали, что для этой модели характерна внутренняя несовместимость, и Горвиц относит ее к категории (СЗ). Предложенная в [Heckerman, 1986] новая формулировка коэффициентов уверенности в терминах отношения вероятностей является, однако, весьма удачной специализацией

Резюме

В работах Горвица (Horvitz) и Гекермана (Heckerman) продемонстрирован типичный теоретический подход к проблеме неопределенности, в котором основное внимание сосредоточено на сравнении семантик различных формальных языков вычисления оценки степени доверия. Однако нужно иметь в виду, что классическая теория вероятностей также допускает неоднозначное семантическое толкование. Например, в работе [Shafer and Tversky, 1985] отмечаются три способа интерпретации формализма Байеса:

семантика частотности — мы задаемся вопросом, как часто при наличии данного свидетельства гипотеза оказывается истинной;

семантика пари — мы определяем, каковы шансы на успех при заключении пари в пользу истинности определенной гипотезы в свете имеющихся свидетельств;

семантика склонности — мы изучаем причинно-следственную модель и пытаемся ответить на вопрос, насколько хорошо данная гипотеза объясняет наблюдаемую ситуацию.

Частотная интерпретация меры доверия используется в экспертных системах чрезвычайно редко. Например, в работе [Buchanan and Shortliffe, 1984, Chapter 11] авторы предпочитают рассматривать оценку доверия как степень подтверждаемости гипотезы, что очень близко к семантике пари. Эта же интерпретация имеет совершенно очевидную связь с оценкой степени риска, используемой в эвристических правилах MYCIN. Модель, используемая в системе INTERNIST, ближе к интерпретации склонности, поскольку в ней значительное внимание уделено возможности формирования пояснений и анализу причинно-следственных связей между свидетельствами и гипотезами.



Поделиться:


Последнее изменение этой страницы: 2016-04-07; просмотров: 323; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.15.92.58 (0.008 с.)