Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Приготовление товарных нефтепродуктовСодержание книги
Поиск на нашем сайте
Товарные масла получают смешением (компаундированием) базовых дистиллятных масел друг с другом или с остаточным компонентом. Высококачественные товарные масла приготовляют с обязательным введением присадок, чаще всего композиций присадок разного функционального действия. Смешение (компаундирование) - один из важных процессов заключительной стадии производства товарных нефтепродуктов, включающий в себя разработку и использование наиболее эффективных технологических схем и систем управления, расчеты оптимальных рецептур смесей с учетом показателей свойств товарных масел и т. д. В зависимости от требований к качеству товарных масел, наличия необходимых компонентов, объема резервуарных парков и других технологических возможностей прозводства применяют разные методы смешения: периодическое частичное смешение в трубопроводе и непрерывное смешение в трубопроводе. Периодическое смешение относится к числу старых методов и заключается в последовательной закачке базовых масел в резервуар и циркуляции смеси насосом до получения однородного по составу и свойствам продукта. При достижении необходимой вязкости масла в резеруар закачивают присадки и смесь прокачивают через подогреватель в течение 6-8 ч. Периодический способ смешения имеет низкую производительность и трудоемок. Его обычно используют на заводах, выпускающих ограниченный ассортимент товарных масел. При частичном смешении в трубопровод одновременно вводят все компоненты товарных масел в необходимых соотношениях. Состав и свойства масел окончательно корректируют, добавляя необходимое количество компонентов. Такой метод смешения используют для приготовления масел, состоящих из небольшого числа компонентов довольно постоянного качества. Значительно эффективнее и экономичнее схема непрерывного смешения компонентов масел и присадок в трубопроводах с использованием автоматизированных станций смешения. В этом случае все компоненты подают в трубопровод в точно заданных соотношениях, и в любой момент в смесительном кол лекторе получают товарное масло требуемого качества. При этом обязательно используют автоматические анализаторы качества на потоках, на технологических трубопроводах устанавливают фильтры, газоотделители, измерители расхода и исполнительные устройства в соответствии с технологическими требованиями и заданными физико-химическими показателями товарных масел. Автоматическое смешение компонентов масел в трубопроводе обеспечивает не прерывность процесса компаундирования и позволяет снизить температур} время приготовления масел за счет исключения циркуляции, повысить точность дозировки компонентов, сократить расход дорогостоящих компонентов - присадок, а также электроэнергии, улучшить условия труда и с области требования техники безопасности. Эксплуатация автоматических станций смешения дает значительный экономический эффект, складывающийся из увеличения точности смешения и экономии дорогостоящих компонентов (60-70 %), ускорения оборачиваемости резервуаров (15-20%), сокращения резервуарного парка (10-15%), экономии электроэнергии (5-15%). Капитальные затраты окупаются через 1-2 года. Пропускная способность станций смешения при поступлении компонентов с технологических установок значительно ниже, чем при совмещении компонентов, поступающих из резервуаров. Для стабилизации расходов и качественных показателей компонентов, поступающих на смешение, между установками и узлом смешения часто вводят промежуточные резервуары небольшой емкости для хранения избытка компонентов или возмещения их недостатка. На многих заводах применяют станции смешения, представляющие собой комбинацию схем, сочетающие периодическое и непрерывное смешение масляных компонентов и присадок. Широко распространена схема смешения по базовому компоненту, т. е. Один или два основных компонента, принятые за базовые и составляющие основную часть товарного масла, подают непосредственно с технологических установок, а другие компоненты - из резервуаров. При такой схеме увеличивается гибкость узла смешения, значительно сокращается резервуарный парк и упрощается нахождение оптимальных смесей. Пластичные смазки представляют собой высокоструктурированные тиксотропные дисперсии твердых загустителей в жидкой среде. Они относятся к числу смазочных материалов, широко используемых в различных областях техники. Первый смазкой была колесная смазь, изготовленная из нефтяных остатков, загущенных кальциевыми мылами смоляных кислот. Всесторонние исследования смазок выявили их коллоидную природу, позволили научно обоснованно подойти к их производству и применению. Несмотря на сравнительно малые объемы производства по разнообразию областей применения смазки превосходят другие смазочные материалы. Смазки состоят из трех компонентов: 70-90% дисперсионной среды (жидкой основы); 10-13% дисперсной фазы (твердого загустителя) и 1-15% добавок (модификаторов структуры, присадок и наполнителей). В качестве дисперсионной среды используют преимущественно нефтяные масла, иногда - синтетические или их смеси с нефтяными маслами. Наиболее широко используют индустриальные масла средней вязкости. Синтетические масла (сложные эфиры, фтор- и хлорорганические жидкости) применяют, для приготовления смазок, используемых в высокоскоростных подшипниках, работающих в широком диапазоне температур. В связи с высокой стоимостью синтетических масел, а также с целью улучшения их отдельных эксплуатационных свойств используют смеси синтетических и нефтяных масел. Загустителями являются металлические мыла (соли высокомолекулярных жирных кислот), твердые нефтяные углеводороды (церезины, петролатумы) и некоторые продукты неорганического (бентонит, силикагель) и органического (пигмены, сажи, кристаллические полимеры, производные мочевины) происхождения. Наиболее распространенными загустителями являются мыло и твердые углеводороды. В зависимости от типа загустителя содержание его в смазках колеблется от 8 до 25% (масс). Для регулирования структуры и улучшения функциональных свойств в смазки вводят добавки - наполнители и присадки. Наполнители — твердые высокодисперсные вещества, практически нерастворимые дисперсионной среде и всегда образующие в смазках самостоятельную фазу с частицами размером, значительно превосходящим размеры мыльных волокон. Присадки в отличие от наполнителей почти всегда растворимы в дисперсионной среде и оказывают существенное влияние на структуру и реологические (объемно-механические) свойства смазок, что осложняет их применение по сравнению с маслами. Для улучшения свойств смазок применяют в основном те присадки, что и при производстве нефтяных масел; основными являются анти окислительные, противозадирные и противоизносные, ингибиторы коррозии. Смазки классифицируют по составу и назначению. Поскольку определяющее влияние на структуру и свойства смазок оказывают загустители, по тип загустителя положен в основу классификации смазок по составу. По типу загустителя смазки подразделяют на мыльные, углеводородные и смазки на неорганических загустителях. Мыльные смазки, в зависимости от состава загустителе делятся на обычные мыльные смазки, смазки на комплексных (в состав загустителя входят соли низко- и высокомолекулярных кислот) и смешанных (в состав загустителя входят соли различных металлов) мыльных загустителях. По типу катиона молекулы мыла смазки делят на кальциевые, натриевые, литиевые, бариевые, алюминиевые и т. д. В зависимости от состава жиров выделяют смазки на синтетических (фракции СЖК, получаемые окислением парафинов) и на природных (смеси гидрированных растительных и животных) жирах, а также на технических жирных кислотах. По назначению смазки делят на антифракционные - для снижения трения и износа деталей машин и механизмов: консервационные - для защиты металлических изделий от коррозии; уплотнительные - для герметизации трущихся поверхностей, зазоров и щелей; специальные -фракционные, приработочные, противообледенительные и т. д. Большая часть смазок относится, как по ассортименту, так и по объему производства, к первым двум группам. Для приготовления антифрикционных смазок применяют в основном мыльные загустители; для консервационных — углеводородные загустители. Нефтяные растворители широко используют при производстве лаков, красок, эмалей, клеев и других продуктов. В качестве растворителей применяют, узкие прямогонные нефтяные фракции с температурой начала кипения не ниже 70-80 °С. Это важно с точки зрения техники безопасности и минимальной токсичности растворителей. Низкая температура конца кипения (до 120 °С) позволяет легко отогнать растворитель или обеспечить высокую скорость его испарения при высыхании лака (резинового клея). НЛП вырабатывает более 10 различных растворителей: бензин - БР - 1 («галоша»); Б - 2, экстракционный, для лакокрасочной промышленности (уайт-спирит); для про-мышленно - технических целей; петролейный эфир, а также продукты ароматического ряда (бензол, толуол и т.д.) Смазочно - охлаждающие жидкости (СОЖ) применяют для облегчения резания металлов, являющегося одним из распространенных и весьма трудоемких процессов в машиностроении. Процессы резания в зависимости от назначения, условий проведения, состава и свойств обрабатываемого металла существенно различаются скоростями (до 80 м/с), локальными температурами поверхностей трения (до 1700 °С) и контактными давлениями (до 4000 МПа). Применение высококачественных СОЖ позволяет увеличить скорость резания и уменьшить износ дорогостоящего режущего инструмента. В настоящее время резание металлов осуществляется с применением масляных, водно-масляных и водных сред с добавками ПАВ, химически активных присадок и твердых высокодисперсных порошков. Наиболее широко применяют водно-масляные СОЖ, эмульсии типа «масло в воде», а также водные растворы растворимых в воде масел с присадками (растворимые масла). Значительно реже, при резании труднообрабатываемых материалов, применяют нефтяные масла с композициями присадок. Нефтяные пластификаторы. При производстве шин, резиновых технических изделий и полимерных материалов применяют различные по составу нефтяные продукты, выполняющие функции пластификаторов - наполнителей каучуков и умягчителей резин. Пластификаторы - наполнители улучшают пластические свойства каучуков и значительно удешевляют их. Вместе с тем по прочностным свойствам резины на основе маслонаполненных каучуков уступают продуктам без добавок. Пластификаторы - умягчители улучшают обрабатываемость резиновых смесей, диспергирование частиц сажи и других наполнителей в резиновых смесях, низкотемпературные свойства и удешевляют готовую продукцию. В качестве пластификаторов применяют нефтяные продукты, а также продукты переработки каменных углей и сланцев, вещества растительного происхождения и синтетические (простые и сложные эфиры). В зависимости от назначения используются нефтяные пластификаторы разного химического состава: от чистых парафине - нафтеновых углеводородов до высокоароматизированных продуктов. Нефтяной кокс представляет собой твердый пористый продукт черного света, состоящий тугоплавких продуктов глубокого уплотнения нефтяных углеводородов (карбоидов) и смолисто - асфальтеновых веществ с незначительным содержанием органических солей. Элементный состав кокса (%): 90-97 углерода, 2-8 водорода, остальное - сера, азот, кислород и зола, в состав которой входят металлы (ванадий, никель и т. д.). Кокс широко применяют в различных областях народного хозяйства. Наибольшее количества кокса потребляет цветная металлургия, при производстве алюминия, для приготовления анодной массы и обожженных анодов алюминиевых электролизеров, графитированных электродов и углеграфитовых конструкционных изделий. Для получения нефтяных коксов используется разное по составу сырье: тяжелые остатки переработки нефти - мазуты и гудроны, крекинг - остатки и тяжелые газойли каталитического крекинга, смолы пиролиза, асфальт с установок деасфальтизации и остаточные экстракты селективной очистки деасфальтизатов фенолом. Технический углерод (сажа) представляет собой высокодисперсный продукт черного цвета, получаемый при высокотемпературном (1200-2000 °С) разложении углеводородов. Основными элементами сажи являются углерод (90-99 %), водород (0,3-0,5 %) и кислород (0,1-7 %), содержание которых колеблется в зависимости от состава сырья и технологии производства. В саже может содержаться также до 1,5 % серы и до 0,5 % золы. Получают сажу печным, канальным (или диффузионным) и термическим методами. Сажа образуется в результате процессов испарения и горения, газификации и термического разложения нефтяного сырья с последующим взаимодействием частиц сажи с газообразными продуктами реакций. Сырьем для производства сажи являются в основном жидкие нефтепродукты, а также природные и попутные газы. Жидкое нефтяное сырье должно быть высокоароматизированным и выкипать в узких пределах: термические и каталитические газойли, экстракты, зеленое и антраценовое масла, пековый дистиллят и т.д. Основные показатели качества сажи - размер частиц (дисперсность, размеры и форма сажевых агрегатов), структурность, удельная поверхность, адсорбционная способность, содержание летучих, серы, посторонних включений, зольность и рН-водной суспензии. Для некоторых марок оценивают показатели тепло- и электрофизических свойств, содержание частиц кокса. Свойства сажи определяются составом сырья и способом производства. Выпускают более 20 марок сажи, которые классифицируют: по способу производства; по составу сырья; по удельной поверхности; по степени структурности. Применяют сажу в основном для повышения прочности каучуков при производстве шин и резино-технических изделий, в качестве пигмента в полиграфической и лакокрасочной промышленности, в производстве взрывчатых веществ, копировальной бумаги, пластинок (музыкальных дисков), изоляционных материалов, карандашей и т.д. Нефтяные битумы представляют собой жидкие, полутвердые или твердые нефтепродукты, вырабатываемые из гудронов, концентратов, крекинг-остатков и некоторых тяжелых побочных продуктов, получаемых при выработке нефтяных масел. Битумы широко применяют в дорожном строительстве, в качестве водонепроницаемого и связывающего материала, для защиты от воды при строительстве гидротехнических сооружений; при производстве кровельных материалов (лаков и мастик) и противокоррозионных покрытий. По областям применения битумы делятся на дорожные, строительные и специальные; по способу производства - на остаточные, окисленные и компаундированные. Элементный состав битумов: 80-85 % углерода; 8-11,5 % водорода; 0,2-4 % кислорода; 0,5-7 % серы; 0,2-0,5 % азота; а также металлы (никель, ванадий, железо, натрий). Они представляют собой сложную коллоидную систему, состоящую из асфальтенов, высокомолекулярных смол и масел: асфальтены придают твердость и высокую температуру размягчения; смолы повышают цементирующие свойства и эластичность; масла являются разжижающей средой, в которой растворяются смолы и набухают асфальтены. Различают три основных способа производства нефтяных остатков перегонкой их в вакууме в присутствии водяного пара или инертного газа (остаточные битумы); окисление кислородом воздуха тяжелых нефтяных остатков-гудронов, полугудронов, высокомолекулярных экстрактов и крекинг-остатков (окисленные битумы); компаундирование (смешение) различных нефтяных остатков с высококипящими дистиллятами и окисленными или остаточными битумами (компаундированные битумы). Нефтяные парафины представляют собой продукты белого или желтого цвета, состоящие преимущественно из парафиновых углеводородов нормального строения. По температуре плавления различают парафины жидкие (< 27 °С) и твердые (28-70 °С); твердые парафины делятся на мягкие (28-45 °С); средне-плавкие (45-50°С) и твердые (50-65 °С). Очищенные парафины могут быть ма- товыми или прозрачными.. Матовость обусловлена оптической анизотропностью его кристаллов, а также трещинами между ними. Прозрачны обычно парафины узкого фракционного состава. При длительном хранении парафин становится более прозрачным, что объясняется происходящей в нем рекристаллизацией, сопровождающейся укрупнением кристаллов, в результате чего свето-рассеивание уменьшается. К эксплуатационным свойствам относятся твердость, механическая прочность, эластичность и т.д. Все они зависят от химического состава, вида связей между молекулами, их строения и плотности упаковки. При одинаковой температуре плавления парафины имеют большую твердость, чем церезины. Они при испытании в статических условиях имеют высокую механическую прочность, а в динамических условиях они хрупки. Церезины представляют собой кристаллические продукты от желтого до коричневого цвета, в состав которых входят нафтеновые и ароматические углеводороды с длинными алкильными цепями преимущественно изостроения, а также высокомолекулярные парафиновые углеводороды нормального и изостроения. Молекулярная масса церезинов составляет от 500 до 750. В отличие от парафинов церезины при равной молекулярной массе имеют более высокие температуру плавления, вязкость и плотность; они менее тверды и более пластичны, чем парафины. Промышленностью вырабатывается широкий ассортимент нефтяных церезинов различного назначения. Часто парафины и церезины в чистом виде не удовлетворяют требованием потребителей по тем или иным свойствам. Необходимых качеств достигают при их смешении, получая композиции для кондитерской и сыродельной промышленности. Церезины широко применяют в производстве пластичных смазок, вазелинов (смесь церезина и петролатума с нефтяным маслом); предметов бытовой химии (мастик, свечей, гуталинов); в качестве пропиточного и изоляционного материала в электро- и радиотехнической промышленности.
Вопросы для самопроверки 1. Сущность процесса компаундирования. 2. Преимущество непрерывного смешения. 3. Назначение пластических смазок. 4. Классификация смазок. 5. Что представляют собой наполнители?
Литература 1. Черножуков Н.И. Технология переработки нефти и газа. Часть III М., Химия,1982. 2. Ахметов С.А. Технология глубокой переработки нефти и газа. Учебное пособие для вузов. Уфа, Гилем, 2002, 672 с. ЛАБОРАТОРНЫЕ ЗАНЯТИЯ Лабораторная работа №1
|
||||
Последнее изменение этой страницы: 2016-04-07; просмотров: 822; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.139.69.138 (0.01 с.) |