Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Ароматические и гетероциклические аминокислоты

Поиск

Современная рациональная классификация основана на полярности радикалов.

В этой связи различают:

1. Аминокислоты с неполярными (гидрофобными) радикалами.

К ним относятся гидрофобные радикалы аланина, валина, лейцина, изолейцина, пролина, метионина, фенилаланина и триптофана. Радикалы этих аминокислот воду не притягивают, а стремятся друг к другу или к другим гидрофобным молекулам.

2. Аминокислоты с полярными (гидрофильными) радикалами.

К ним относятся серин, треонин, тирозин, аспарагин, глутамин и цистеин. В состав радикалов этих аминокислот входят полярные функциональные группы, образующие водородные связи с водой.

В свою очередь, эти аминокислоты делят на две группы:

1) способные к ионизации в условиях организма (ионогенные).

Например, при рН = 7 фенольная гидроксильная группа тирозина ионизирована на 0,01%; тиольная группа цистеина на 8%.

2) не способные к ионизации (неионогенные)

Например, гидроксильная группа треонина:

3. Аминокислоты с отрицательно заряженными радикалами.

К этой группе относят аспарагиновую и глутаминовую кислоты. Эти аминокислоты называют кислыми, так как они содержат дополнительную карбоксильную группу в радикале, которая диссоциирует с образованием карбоксилат-аниона. Полностью ионизированные формы этих кислот называют аспартатом и глутаматом:

К этой же группе иногда относят аминокислоты аспарагин и глутамин, содержащие карбоксамидную группу (СОNH2), как потенциальную карбоксильную группу, возникающую в процессе гидролиза.

Величины рKa β-карбоксильной группы аспарагиновой кислоты и γ-карбоксильной группы глутаминовой кислоты выше по сравнению с рKa α-карбоксильных групп и в большей степени соответствуют значениям рKa карбоновых кислот.

4. Аминокислоты с положительно заряженными радикалами

К ним относят лизин, аргинин и гистидин. У лизина есть вторая аминогруппа, способная присоединять протон:

У аргинина положительный заряд приобретает гуанидиновая группа:

Один из атомов азота в имидазольном кольце гистидина содержит неподеленную пару электронов, которая также может присоединять протон:

Эти аминокислоты называют оснóвными.

7.3 Способы получения α-аминокислот в условиях in vitro, химические свойства

1. Действие аммиака на α-галогенкислоты:

2. Циангидринный синтез:

3. Восстановление α-нитрокислот, оксимов или гидразонов
α-оксокислот:

4. Каталитическое восстановление оксокислот в присутствии аммиака:

Стереоизомерия аминокислот

Все природные α-аминокислоты, кроме глицина (NH2 CH2 COOH), имеют асимметрический атом углерода
(α-углеродный атом), а некоторые из них даже два хиральных центра, например, треонин. Таким образом, все аминокислоты могут существовать в виде пары несовместимых зеркальных антиподов (энантиомеров).

За исходное соединение, с которым принято сравнивать строение α-аминокислот, условно принимают D- и L-молочные кислоты, конфигурации которых, в свою очередь, установлены по D- и L-глицериновым альдегидам.

Все превращения, которые осуществляются в этих рядах при переходе от глицеринового альдегида к α-аминокислоте, выпол-няются в соответствии с главным требованием они не создают новых и не разрывают старых связей у асимметрического центра.

Для определения конфигурации α-аминокислоты в качестве эталона часто используют серин (иногда аланин). Конфигурации их так же выведены из D- и L-глицериновых альдегидов:

Природные аминокислоты, входящие в состав белков, относятся к L-ряду. D-формы аминокислот встречаются сравнительно редко, они синтезируются только микроорганизмами и называются «неприродными» аминокислотами. Животными организмами D-аминокислоты не усваиваются. Интересно отметить действие D- и L-аминокислот на вкусовые рецепторы: большинство аминокислот L-ряда имеют сладкий вкус, а аминокислоты D-ряда горькие или безвкусные.

Без участия ферментов самопроизвольный переход L-изомеров в D-изомеры с образованием эквимолярной смеси (рацемическая смесь) осуществляется в течение достаточно длительного промежутка времени.

Рацемизация каждой L-кислоты при данной температуре идет с определенной скоростью. Это обстоятельство можно использовать для установления возраста людей и животных. Так, например, в твердой эмали зубов имеется белок дентин, в котором L-аспартат переходит в D-изомер при температуре тела человека со скоростью 0,01% в год. В период формирования зубов в дентине содержится только L-изомер, поэтому по содержанию D-аспартата можно рассчитать возраст человека или животного.

Физические свойства аминокислот

Во-первых, в противоположность аминам и карбоновым кислотам аминокислоты представляют собой нелетучие кристаллические вещества, плавящиеся с разложением при близких и довольно высоких температурах, поэтому идентификации аминокислот по температурам плавления достаточно затруднительна.

Во-вторых, аминокислоты очень плохо растворимы в неполярных растворителях типа петролейного эфира, диэтилового эфира, бензола и хорошо растворимы в воде.

В-третьих, в водных растворах аминокислоты имеют высокие дипольные моменты.

В-четвертых, константы кислотности и основности для групп СООН и NH2 необычайно малы. Так, для глицина константа кислотности Ka = 1,6.1010, а константа основности Kb = 2,5.1012; в то время как для большинства карбоновых кислот Ka 105 а для алифатических аминов Kb 104.Все эти свойства вполне объяснимы,если принять во внимание тот факт, что аминокислоты существуют в виде диполярного иона, который образуется за счет отщепления протона от карбоксильной группы и присоединения его к аминогруппе. Диполярный ион часто называют внутренней солью.

Кислотно-основные свойства также становятся понятными, если учесть, что измеряемая Ka в действительности относится к кислотности иона RNH3+:

а константа основности (Kb) в действительности относится к основности карбоксилат-иона.

При подщелачивании раствора аминокислоты диполярный ион I превращается в анион II, так как более сильное основание (гидроксильный ион) отрывает протон от иона аммония и образуется более слабое основание амин.

Если подкислить раствор аминокислоты, ион I превратится в катион III, так как более сильная кислота Н3О+ отдает протон карбоксилат-иону и образуется более слабая кислота:

Необходимо отметить, что ионы II и Ш, содержащие свободную аминогруппу или свободную карбоксильную группу, находятся в равновесии с диполярным ионом:

Однако следует иметь в виду, что в данном равновесии участвует также определенное (хотя и небольшое) количество незаряженных молекул аминокислот.

Изоэлектрическая точка аминокислот.

Если раствор аминокислоты поместить в электрическое поле, то в зависимости от активной реакции среды будет наблюдаться следующая картина: в кислой среде ион аминокислоты мигрирует к катоду, а в щелочной к аноду. Если при определенном рН среды концентрация катионов станет равной концентрации анионов, то никакого движения аминокислоты происходить не будет.

 

Табл.8

Среда
Сильнокислая Нейтральная Сильнощелочная
I. Аминокислоты с недиссоциирующими радикалами
Заряд: +1    
II. Аминокислоты, содержащие в радикале анионные группы
Заряд: +1    
III. Аминокислоты, содержащие в радикале катионные группы
Заряд: +2 +1  
         

Концентрация ионов водорода (pH), при которой аминокислота не перемещается в электрическом поле, называется изоэлектрической точкой данной аминокислоты (рI).

Изоэлектрическая точка аминокислоты зависит от кислотности группы NH3+, основности карбоксилат-аниона, природы радикала и присутствия в молекуле кислоты любой дополнительной основной или кислотной группы.При пропускании постоянного тока через раствор, содержащий смесь нескольких аминокислот, каждая из них будет двигаться к катоду или к аноду со скоростью, зависящей от природы этой аминокислоты и от рН среды. Разделение и анализ смесей амино-кислот, основанное на этом явлении, называется электрофорезом.

Химические свойства аминокислот. Амфотерность аминокислот.

Наличие в молекуле аминокислоты функциональных групп кислотного и основного характера обусловливает амфотерность аминокислот. Подобно любому амфотерному соединению, аминокислоты образуют соли как при действии кислоты, так и при действии щелочи.

Аминокислоты, будучи гетерофункциональными соединениями, должны проявлять свойства как одной, так и другой функциональной группы.



Поделиться:


Последнее изменение этой страницы: 2017-02-08; просмотров: 1168; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.189.145.109 (0.009 с.)