Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Введение в универсальный язык моделирования UML

Поиск

Краткая история UML

Унифицированный язык моделирования (Unified Modeling Language, UML) является графическим языком для визуализации, специфицирования, конструирования и документирования систем. Язык UML предназначен, прежде всего, для разработки программных систем. Его использование особенно эффективно в следующих областях:

□ информационные системы масштаба предприятия;

□ банковские и финансовые услуги;

□ телекоммуникации;

□ транспорт;

□ оборонная промышленность, авиация и космонавтика;

□ розничная торговля;

□ медицинская электроника;

□ наука;

□ распределенные Web-системы.

С помощью UML можно разработать детальный план создаваемой системы, отображающий не только ее концептуальные элементы, такие как системные функции и бизнес-процессы, но и конкретные особенности реализации, в том числе классы, написанные на специальных языках программирования, схемы баз данных и программные компоненты многократного использования. Язык UML представляет интерес для любого специалиста, участвующего в процессе разработки, установки и поддержки программного обеспечения.

Объектно-ориентированные языки моделирования появились в период с середины 70-х до конца 80-х годов. Тогда исследователи, поставленные перед необходимостью учитывать новые возможности объектно-ориентированных языков программирования и требования, предъявляемые все более сложными приложениями, вынуждены были начать разработку различных альтернативных подходов к анализу и проектированию. С 1989 по 1994 год число различных объектно-ориентированных методов возросло с десяти более чем до пятидесяти. Тем не менее многие пользователи испытывали затруднения при выборе языка моделирования, который бы полностью соответствовал их потребностям, что послужило причиной так называемой «войны методов». Языки моделирования:

Booch - создан Грейди Бучем;

OOSE - разработан Айваром Джекобсоном;

ОМТ - разработан Айваром Джекобсоном;

Fusion – разработан Шлаер-Меллором и Коад-Йордоном.

В результате этих войн появилось новое поколение методов, среди которых особое значение приобрели языки Booch, созданный Грейди Бучем (Grady Booch), OOSE (Object-Oriented Software Engineering), разработанный Айваром Джекобсоном (Ivar Jacobson) и ОМТ (Object Modeling Technique), автором которого является Джеймс Рамбо (James Rumbaugh). Кроме того, следует упомянуть языки Fusion Шлаера-Меллора (Shlaer-Mellor) и Коада-Йордона (Coad-Yourdon).

Каждый из этих методов можно считать вполне целостным и законченным, хотя любой из них имеет не только сильные, но и слабые стороны. Выразительные возможности метода Буча особенно важны на этапах проектирования и конструирования модели. OOSE великолепно приспособлен для анализа и формулирования требований, а также для высокоуровневого проектирования. ОМТ-2 оказался особенно полезным для анализа и разработки информационных систем, ориентированных на обработку больших объемов данных.

Критическая масса новых идей начала формироваться к середине 90-х годов, когда Грейди Буч (компания Rational Software Corporation), Айвар Джекобсон (Objectory) и Джеймс Рамбо (General Electric) предприняли попытку объединить свои методы, уже получившие мировое признание как наиболее перспективные в данной области. Являясь основными авто­рами языков Booch, OOSE и ОМТ, партнеры попытались создать новый, унифицированный язык моделирования и руководствовались при этом тремя соображениями. Во-первых, все три метода, независимо от желания разработчиков, уже развивались во встречном направлении. Разумно было продолжать эту эволюцию вместе, а не по отдельности, что помогло бы в будущем устранить нежелательные различия и, как следствие, неудобства для пользователей. Во-вторых, унифицировав методы, проще было прив­нести стабильность на рынок инструментов объектно-ориентированного моделирования, что дало бы возможность положить в основу всех проектов единый зрелый язык, а создателям инструментальных средств позволило бы сосредоточиться на более продуктивной деятельности. Наконец, следовало полагать, что подобное сотрудничество приведет к усовершенствованию всех трех методов и обеспечит решение задач, для которых любой из них, взятый в отдельности, был не слишком пригоден.

Начав унификацию, авторы поставили перед собой три главные цели.

1. Моделировать системы целиком, от концепции до исполняемого артефакта, с помощью объектно-ориентированных методов.

2. Решить проблему масштабируемости, которая присуща сложным системам, предназначен-ным для выполнения ответственных задач.

3. Создать такой язык моделирования, который может использоваться не только людьми, но и компьютерами.

Создавая UML, разработчики старались найти оптимальное решение этих проблем. Официально создание UML началось в октябре 1994 года, когда Рамбо перешел в компанию Rational Software, где работал Буч. Первона­чальной целью было объединение методов Буча и ОМТ. Первая пробная версия 0.8 Унифицированного Метода (Unified Method), как его тогда называли, появилась в октябре 1995 года. Приблизительно в это же время в компанию Rational перешел Джекобсон, и проект UML был расширен с целью включить в него язык OOSE.

Версия 1.0 языка была представлена Группе по управлению объектами (Object Management Group, OMG) на конкурс по созданию стандартного языка моделирования в январе 1997 года.

В настоящее время используется версия 2.0.

Обзор языка UML

Унифицированный язык моделирования (UML) является стандартным инструментом для создания «чертежей» программного обеспечения. С помощью UML можно визуализировать, специфицировать, конструировать и документировать артефакты программных систем. UML пригоден для моделирования любых систем, от информационных систем масштаба предприятия до распределенных Web-приложений и систем реального времени.

Это очень выразительный язык, позволяющий рассмотреть систему со всех точек зрения, имеющих отношение к ее разработке и последующему развертыванию. Несмотря на обилие выразительных возможностей, этот язык прост для понимания и использования. Изучение UML удобнее всего начать с его концептуальной модели, которая включает в себя три основных элемента: базовые строительные блоки, правила, определяющие, как эти блоки могут сочетаться между собой, и некоторые общие механизмы языка.

Несмотря на свои достоинства, UML - это всего лишь язык, он является одной из составляющих процесса разработки программного обеспечения, и не более того. Хотя UML не зависит от моделируемой реальности, лучше всего применять его, когда процесс моделирования основан на рассмотрении прецедентов использования, является итеративным и пошаговым, а сама система имеет четко выраженную архитектуру.

UML - это язык для визуализации, специфицирования, конструирования и документирования артефактов программных систем. Прежде всего, UML - это язык. Язык состоит из словаря и правил, позволяющих комбинировать входящие в него слова и получать осмысленные конструкции. В языке моделирования словарь и правила ориентированы на концептуальное и физическое представление системы. Язык моделирования, подобный UML, является стандартным средством для составления «чертежей» программного обеспечения. Моделирование необходимо для понимания системы. При этом единственной модели никогда не бывает достаточно.

Напротив, для понимания любой нетривиальной системы приходится разрабатывать большое количество взаимосвязанных моделей. В применении к программным системам это означает, что необходим язык, с помощью которого можно с различных точек зрения описать представления архитектуры системы на протяжении цикла ее разработки.

Словарь и правила такого языка, как UML, объясняют, как создавать и читать хорошо определенные модели, но ничего не сообщают о том, какие модели и в каких случаях нужно создавать. Это задача всего процесса разработки программного обеспечения. Хорошо организованный процесс должен подсказать вам, какие требуются артефакты, какие ресурсы необходимы для их создания, как можно использовать эти артефакты, чтобы оценить выполненную работу и управлять проектом в целом.

UML – это язык визуализации. Сточки зрения большинства программистов, размышления по поводу реализации проекта почти эквивалентны написанию для него кода. Вы думаете - значит вы кодируете. И действительно, некоторые вещи лучше всего выражаются непосредственно в коде на каком-либо языке программирования, поскольку текст программы - это самый простой и короткий путь для записи алгоритмов и выражений.

Но даже в таких случаях программист занимается моделированием, хотя и неформально. Он может, допустим, записать набросок идеи на доске или на салфетке. Однако такой подход чреват неприятностями. Во-первых, обмен мнениями по поводу концептуальной модели возможен только то­гда, когда все участники дискуссии говорят на одном языке. Как правило, при разработке проектов компаниям приходится изобретать собственные языки, и новичку непросто догадаться, о чем идет речь. Во-вторых, нельзя получить представление об определенных аспектах программных систем без модели, выходящей за границы текстового языка программирования. Так, назначение иерархии классов можно, конечно, понять, если внимательно изучить код каждого класса, но воспринять всю структуру сразу и целиком не получится. Аналогично изучение кода системы не позволит составить целостное представление о физическом распределении и воз­можных миграциях объектов в Web-приложении. В-третьих, если автор кода никогда не воплощал в явной форме задуманные им модели, эта информация будет навсегда утрачена, если он сменит место работы. В лучшем случае ее можно будет лишь частично воссоздать исходя из реализации.

Использование UML позволяет решить третью проблему: явная модель облегчает общение. Некоторые особенности системы лучше всего моделировать в виде текста, другие - графически. На самом деле во всех интересных системах существуют структуры, которые невозможно представить с помощью одного лишь языка программирования. UML — графический язык, что позволяет решить вторую из обозначенных проблем. UML - это не просто набор графических символов. За каждым из них стоит хорошо определенная семантика. Это значит, что модель, написанная одним разработчиком, может быть однозначно интерпретирована другим или даже инструментальной программой. Так решается первая из перечисленных выше проблем.

UML - это язык специфицирования. В данном контексте специфицирование означает построение точных, недвусмысленных и полных моделей. UML позволяет специфицировать все существенные решения, касающиеся анализа, проектирования и реализации, которые должны приниматься в процессе разработки и развертывания системы программного обеспечения.

UML - это язык конструирования. UML не является языком визуального программирования, но модели, созданные с его помощью, могут быть непосредственно переведены на различные языки программирования. Иными словами, UML-модель можно отобразить на такие языки, как Java, C++, Visual Basic, Ada и другие.

Те понятия, которые предпочтительно передавать графически, так и представляются в UML; те же, которые лучше описывать в текстовом виде, выражаются с помощью языка програм-мирования. Такое отображение модели на язык программирования позволяет осуществлять прямое проектирование - генерацию кода из модели UML в какой-то конкретный язык. Можно решить и обратную задачу: реконструировать модель по имеющейся реализации. Обратное проектирование не представляет собой ничего необычного. Если вы не закодировали информацию в реализации, то эта информация теряется при прямом переходе от моделей к коду. Поэтому для обратного проектирования необходимы как инструментальные средства, так и вмешательство человека. Сочетание прямой генерации кода и обратного проектирования позволяет работать как в графическом, так и в текстовом представлении, если инструментальные программы обеспечивают согласованность между обоими представлениями. Помимо прямого отображения в языки программирования UML в силу своей выразительности и однозначности позволяет непо-средственно исполнять модели, имитировать поведение систем и контролировать действующие системы.

UML - это язык документирования. Компания, выпускающая программные средства, помимо исполняемого кода производит и другие артефакты, в том числе следующие:

□ требования к системе;

□ архитектуру;

□ проект;

□ исходный код;

□ проектные планы;

□ тесты;

□ прототипы;

□ версии, и др.

UML позволяет решить проблему документирования системной архитектуры и всех ее деталей. UML также предлагает язык для формулирования требований к системе и определения тестов и, наконец, предоставляет средства для моделирования работ на этапе планирования проекта и управления версиями.

Концептуальная модель UML

Для понимания UML необходимо усвоить его концептуальную модель, которая включает в себя три составные части:

Составные части концептуальной модели UML:

1) основные строительные блоки языка;

2) правила их сочетания;

3) некоторые общие для всего языка механизмы.

Усвоив эти элементы, вы сумеете читать модели на UML и самостоятельно создавать их, вначале, конечно, не очень сложные. По мере приобретения опыта в работе с языком вы научитесь пользоваться и более развитыми его возможностями.

Словарь языка UML включает три вида строительных блоков:

□ сущности;

□ отношения;

□ диаграммы.

Сущности - это абстракции, являющиеся основными элементами модели.

Отношения связывают различные сущности, диаграммы группируют представляющие интерес совокупности сущностей.

В UML имеется четыре типа сущностей:

□ структурные;

□ поведенческие;

□ группирующие;

□ аннотационные.

Сущности являются основными объектно-ориентированными блоками языка. С их помощью можно создавать корректные модели. Структурные сущности - это имена существительные в моделях на языке UML. Как правило, они представляют собой статические части модели, соответствующие концептуальным или физическим элементам системы. Существует семь разновидностей структурных сущностей.

Класс (Class) - это описание совокупности объектов с общими атрибутами, операциями, отношениями и семантикой. Класс реализует один или несколько интерфейсов. Графически класс изображается в виде прямоугольника, в котором обычно записаны его имя, атрибуты и операции, как показано на рис. 2.1.

 

Рис. 2.1. Классы

 

Интерфейс (Interface) - это совокупность операций, которые определяют сервис (набор услуг), предоставляемый классом или компонентом. Таким образом, интерфейс описывает видимое извне поведение элемента. Интерфейс может представлять поведение класса или компонента полностью или частично; он определяет только спецификации операций (сигнатуры), но никогда - их реализации. Графически интерфейс изображается в виде круга, под которым пишется его имя, как показано на рис. 2.2. Интерфейс редко существует сам по себе - обычно он присоединяется к реализующему его классу или компоненту.

 

Рис. 2.2. Интерфейс

 

Кооперация (Collaboration) определяет взаимодействие. Она представляет собой совокупность ролей и других элементов, которые, работая совместно, производят некоторый кооперативный эффект, не сводящийся к простой сумме слагаемых. Кооперация, следовательно, имеет как структурный, так и поведенческий аспект. Один и тот же класс может принимать участие в нескольких кооперациях; таким образом, они являются реализацией образцов поведения, формирующих систему. Графически кооперация изображается в виде эллипса, ограниченного пунктирной линией, в который обычно заключено только имя, как показано на рис. 2.3.

 

Рис. 2.3. Кооперация

 

Прецедент (Use case) - это описание последовательности выполняемых системой действий, которая производит наблюдаемый результат. Прецедент применяется для структурирования поведенческих сущностей модели. Прецеденты реализуются посредством кооперации. Графически прецедент изображается в виде ограниченного непрерывной линией эллипса, обычно содержащего только его имя, как показано на рис. 2.4.

 

Рис. 2.4. Прецедент

 

Три другие сущности - активные классы, компоненты и узлы - подобны классам: они описывают совокупности объектов с общими атрибутами. Эти семь базовых элементов - классы, интерфейсы, кооперации, прецеденты, активные классы, компоненты и узлы - являются основными структурными сущностями, которые могут быть включены в модель UML. Существуют также разновидности этих сущностей: актеры, сигналы, утилиты (виды классов), процессы и нити (виды активных классов), приложения, документы, файлы, библиотеки, страницы и таблицы (виды компонентов).

Поведенческие сущности (Behavioral things) являются динамическими составляющими модели UML. Существует всего два основных типа поведенческих сущностей. Это глаголы языка. Они описывают поведение модели во времени и пространстве.

Взаимодействие (Interaction) — это поведение, суть которого заключается в обмене сообщениями (Messages) между объектами в рамках конкретного контекста. С помощью взаимодействия можно описать как отдельную операцию, так и поведение совокупности объектов. Взаимодействие предполагает ряд других элементов, таких как сообщения, последовательности действий (поведение, инициированное сообщением) и связи (между объектами). Графически сообщения изображаются в виде стрелки, над которой почти всегда пишется имя соответствующей операции, как показано на рис. 2.5.

 

Рис. 2.5. Сообщение

Автомат - это алгоритм поведения, определяющий последовательность состояний, через которые объект или взаимодействие проходят на протяжении своего жизненного цикла. С помощью автомата можно описать поведение отдельного класса или кооперации классов. С автоматом связан ряд других элементов: состояния (рис. 2.6), переходы (из одного состояния в другое), события (сущности, инициирующие переходы) и виды действий (реакция на переход). Графически состояние изображается в виде прямоугольника с закругленными углами, содержащего имя и, возможно, подсостояния.

 

Рис. 2.6. Состояние

 

Эти два элемента - взаимодействия и автоматы - являются основными поведенческими сущностями, входящими в модель UML. Семантически они часто бывают связаны с различными структурными элементами, в первую очередь - классами, кооперациями и объектами.

Группирующие сущности являются организующими частями модели UML. Это блоки, на которые можно разложить модель. Есть только одна первичная группирующая сущность, а именно пакет. Пакеты (Packages) представляют собой универсальный механизм организации элементов в группы. В пакет можно поместить структурные, поведенческие и даже другие группирующие сущности. В отличие от компонентов, существующих во время работы программы, пакеты носят чисто концептуальный характер, то есть существуют только во время разработки. Изображается пакет в виде папки с закладкой, содержащей, как правило, только имя и иногда – содержимое (рис. 2.7).

 

Рис. 2.7. Пакет

 

Пакеты - это основные группирующие сущности, с помощью которых можно организовать модель UML. Существуют также вариации пакетов, например каркасы, модели и подсистемы.

Аннотационные сущности - пояснительные части модели UML. Это комментарии для дополнительного описания, разъяснения или замечания к любому элементу модели. Имеется только один базовый тип аннотационных элементов - примечание (Note). Примечание - это просто символ для изображения комментариев или ограничений, присоединенных к элементу или группе элементов. Графически примечание изображается в виде прямоугольника с загнутым краем, содержащим текстовый или графический комментарий, как показано на рис. 2.8.

 

Рис. 2.8. Примечание

 

Этот элемент является основной аннотационной сущностью, которую можно включать в модель UML. Чаще всего примечания используются, чтобы снабдить диаграммы комментариями или ограничениями, которые можно выразить в виде неформального или формального текста. Существуют вариации этого элемента, например требования, где описывают некое желательное поведение с точки зрения внешней по отношению к модели.

В языке UML определены четыре типа отношений:

□ зависимость;

□ ассоциация;

□ обобщение;

□ реализация.

Эти отношения являются основными связующими строительными блоками в UML и применяются для создания корректных моделей.

Зависимость (Dependency) - это семантическое отношение между двумя сущностями, при котором изменение одной из них, независимой, может повлиять на семантику другой, зависимой. Графически зависимость изображается в виде прямой пунктирной линии, часто со стрелкой, которая может содержать метку (рис. 2.9).

 

Рис. 2.9. Зависимость

 

Ассоциация (Association) - структурное отношение, описывающее совокупность связей;
связь - это соединение между объектами. Разновидностью ассоциации является агрегирование (Aggregation) - так называют структурное отношение между целым и его частями. Графически ассоциация изображается в виде прямой линии (иногда завершающейся стрелкой или содержащей метку), рядом с которой могут присутствовать дополнительные обозначения, например кратность и имена ролей. На рис. 2.10 показан пример отношений этого типа.

 

Рис. 2.10. Ассоциация

 

Обобщение (Generalization) - это отношение «специализация/обобщение». При этом объект специализированного элемента (потомок) может быть подставлен вместо объекта обобщенного элемента (родителя или предка). Таким образом, потомок (Child) наследует структуру и поведение своего родителя (Parent). Графически отношение обобщения изображается в виде линии с незакрашенной стрелкой, указывающей на родителя, как показано на рис. 2.11.

 

Рис. 2.11. Обобщение

 

Наконец, реализация (Realization) - это семантическое отношение между классификаторами. При этом один классификатор определяет «контракт», а другой гарантирует его выполнение. Отношения реализации встречаются в двух случаях: во-первых, между интерфейсами и реализующими их классами или компонентами, а во-вторых, между прецедентами и реализующими их кооперациями. Отношение реализации изображается в виде пунктирной линии с незакрашенной стрелкой, как нечто среднее между отношениями обобщения и зависимости (рис. 2.12).

 

Рис. 2.12. Реализация

 

Диаграмма в UML - это графическое представление набора элементов, изображаемое чаще всего в виде связанного графа с вершинами и ребрами. Диаграммы рисуют для визуализации системы с разных точек зрения. Теоретически диаграммы могут содержать любые комбинации сущностей и отношений. На практике, однако, применяется сравнительно небольшое количество типовых комбинаций, соответствующих пяти наиболее употребительным видам, которые составляют архитектуру программной системы. Таким образом, в UML выделяют девять типов диаграмм:

□ диаграммы классов;

□ диаграммы объектов;

□ диаграммы прецедентов;

□ диаграммы последовательностей;

□ диаграммы кооперации;

□ диаграммы состояний;

□ диаграммы действий;

□ диаграммы компонентов;

□ диаграммы развертывания.

На диаграмме классов показывают классы, интерфейсы, объекты и кооперации, а также их отношения. При моделировании объектно-ориентированных систем этот тип диаграмм используют чаще всего. Диаграммы классов соответствуют статическому виду системы с точки зрения проектирования. Диаграммы классов, которые включают активные классы, соответствуют статическому виду системы с точки зрения процессов.

На диаграмме объектов представлены объекты и отношения между ними. Они являются статическими «фотографиями» экземпляров сущностей, показанных на диаграммах классов. Диаграммы объектов, как и диаграммы классов, относятся к статическому виду системы с точки зрения проектирования или процессов, но с расчетом на настоящую или макетную реализацию. На диаграмме прецедентов представлены прецеденты и актеры (частный случай классов), а также отношения между ними. Диаграммы прецедентов относятся к статическому виду системы с точки зрения прецедентов использования. Они особенно важны при организации и моделировании поведения системы.

Диаграммы последовательностей и кооперации являются частными случаями диаграмм взаимодействия. На диаграммах взаимодействия представлены связи между объектами; показаны, в частности, сообщения, которыми объекты могут обмениваться. Диаграммы взаимодействия относятся к динамическому виду системы. При этом диаграммы последовательности отражают временную упорядоченность сообщений. А диаграммы кооперации - структурную организацию обменивающихся сообщениями объектов. Эти диаграммы являются изоморфными, то есть могут быть преобразованы друг в друга.

На диаграммах состояний (Statechart diagrams) представлен автомат, включающий в себя состояния, переходы, события и виды действий. Диаграммы состояний относятся к динамическому виду системы, особенно они важны при моделировании поведения интерфейса, класса или кооперации. Они акцентируют внимание на поведении объекта, зависящем от последовательности событий, что очень полезно для моделирования реактивных систем.

Диаграмма деятельности - это частный случай диаграммы состояний; на ней представлены переходы потока управления от одной деятельности к другой внутри системы. Диаграммы деятельности относятся к динамическому виду системы, они наиболее важны при моделировании ее функционирования и отражают поток управления между объектами.

На диаграмме компонентов представлена организация совокупности компонентов и существующие между ними зависимости. Диаграммы компонентов относятся к статическому виду системы с точки зрения реализации. Они могут быть соотнесены с диаграммами классов, так как компонент обычно отображается на один или несколько классов, интерфейсов или коопераций.

На диаграмме развертывания представлена конфигурация обрабатывающих узлов системы и размещенных в них компонентов. Диаграммы развертывания относятся к статическому виду архитектуры системы с точки зрения развертывания. Они связаны с диаграммами компонентов, поскольку в узле обычно размещаются один или несколько компонентов.

Здесь приведен неполный список диаграмм, применяемых в UML. Инструментальные средства позволяют генерировать и другие диаграммы, но девять перечисленных встречаются на практике чаще всего. Строительные блоки UML нельзя произвольно объединять друг с другом. Как и любой другой язык, UML характеризуется набором правил, определяющих, как должна выглядеть хорошо оформленная модель, то есть семантически самосогласованная и находящаяся в гармонии со всеми моделями, которые с нею связаны.

В языке UML имеются семантические правила, позволяющие корректно и однозначно определять:

имена, которые можно давать сущностям, отношениям и диаграммам;

область действия (контекст, в котором имя имеет некоторое значение);

видимость (когда имена видимы и могут использоваться другими элементами);

целостность (как элементы должны правильно и согласованно соотноситься друг с другом);

выполнение (что значит выполнить или имитировать некоторую динамическую модель).

Модели, создаваемые в процессе разработки программных систем, эволюционируют со временем и могут неоднозначно рассматриваться разными участниками проекта в разное время. По этой причине создаются не только хорошо оформленные модели, но и такие, в которых имеются дефекты:

□ содержат скрытые элементы (ряд элементов не показывают, чтобы упростить восприятие);

□ неполные (отдельные элементы пропущены);

□ несогласованные (целостность модели не гарантируется).

Появление не слишком хорошо оформленных моделей неизбежно в процессе разработки, пока не все детали системы прояснились в полной мере. Правила языка UML побуждают - хотя не требуют - в ходе работы над моделью решать наиболее важные вопросы анализа, проектирования и реализации, в результате чего модель со временем становится хорошо оформленной.

Классы

Классы - это самые важные строительные блоки любой объектно-ориентированной системы. Они представляют собой описание совокупности объектов с общими атрибутами, операциями, отношениями и семантикой. Класс реализует один или несколько интерфейсов. Классы используются для составления словаря разрабатываемой системы. Это могут быть абстракции, являющиеся частью предметной области, либо классы, на которые опирается реализация. С их помощью описывают программные, аппаратные или чисто концептуальные сущности. Хорошо структурированные классы характеризуются четкими границами и помогают формировать сбалансированное распределение обязанностей в системе.

Многие языки программирования непосредственно поддерживают концепцию классов, И это замечательно, поскольку в таком случае создаваемые вами абстракции могут быть непосредственно отображены в конструкциях языка программирования, даже если речь идет об абстракциях не программных сущностей типа "покупатель", "торговля" или "разговор". Графическое изображение класса в UML показано на рис. 2.13.

 

Рис. 2.13. Класс

 

Такое обозначение позволяет визуализировать абстракцию независимо от конкретного языка программирования и подчеркнуть ее наиболее важные характеристики: имя, атрибуты и операции. Классом (Class) называется описание совокупности объектов с общими атрибутами, операциями, отношениями и семантикой. Графически класс изображается в виде прямоугольника. У каждого класса должно быть имя, отличающее его от других классов. Имя класса - это текстовая строка. Взятое само по себе, оно называется простым именем; к составному имени спереди добавлено имя пакета, куда входит класс. Имя класса в объемлющем пакете должно быть уникальным. При графическом изображении класса показывается только его имя, как на рис. 2.14.

 

Рис. 2.14. Простые и составные имена

 

Атрибут - это именованное свойство класса, включающее описание множества значений, которые могут принимать экземпляры этого свойства. Класс может иметь любое число атрибутов или не иметь их вовсе. Атрибут представляет некоторое свойство моделируемой сущности, общее для всех объектов данного класса. Например, у любой стены есть высота, ширина и толщина; при моделировании клиентов можно задавать фамилию, адрес, номер телефона и дату рождения. Таким образом, атрибут является абстракцией данных объекта или его состояния. В каждый момент времени любой атрибут объекта, принадлежащего данному классу, обладает вполне определенным значением. Атрибуты представлены в разделе, который расположен под именем класса; при этом указываются только их имена. При описании атрибута можно явным образом указывать его класс и тип атрибута, принимаемый по умолчанию, как это показано на рис. 2.15 – 2.16.

 

Рис. 2.15. Атрибуты

 

Рис. 2.16. Атрибуты и их класс

 

Операцией называется реализация услуги, которую можно запросить у любого объекта класса для воздействия на поведение. Иными словами, операция - это абстракция того, что позволено делать с объектом. У всех объектов класса имеется общий набор операций. Класс может содержать любое число операций или не содержать их вовсе. Например, для всех объектов класса Rectangle (Прямоугольник) из библиотеки для работы с окнами, содержащейся в пакете add языка Java, определены операции перемещения, изменения размера и опроса значений свойств. Часто (хотя не всегда) обращение к операции объекта изменяет его состояние или его данные. Операции класса изображаются в разделе, расположенном ниже раздела с атрибутами. При этом можно ограничиться только именами, как показано на рис. 2.17.

 

Рис. 2.17

 

Более детальная спецификация выполнения операции осуществляется с помощью примечаний и диаграмм деятельности. Операцию можно описать более подробно, указав ее сигнатуру, в которую входят имена и типы всех параметров, их значения, принятые по умолчанию, а применительно к функциям - тип возвращаемого значения, как показано на рис. 2.18.

 

Рис. 2.18. Операции и их сигнатуры

 

При изображении класса необязательно сразу показывать все его атрибуты и операции. Как правило, это попросту невозможно - их чересчур много для одного рисунка, - да и не требуется, поскольку для данного представления системы лишь небольшое подмножество атрибутов и операций имеет значение. По этим причинам класс обычно сворачивают, т.е. изображают лишь некоторые из имеющихся атрибутов и операций, а то и вовсе опускают их. Таким образом, пустой раздел в соответствующем месте прямоугольника может означать не отсутствие атрибутов или операций, а только то, что их не сочли нужным изобразить. Явным образом наличие дополнительных атрибутов или операций можно обозначить, поставив в конце списка многоточие. Для лучшей организации списков атрибутов и операций можно снабдить каждую группу дополнительным описанием, воспользовавшись стереотипами.

Обязанности (Responsibilities) класса - это своего рода контракт, которому он должен подчиняться. Определяя класс, вы постулируете, что все его объекты имеют однотипное состояние и ведут себя одинаково. Выражаясь абстрактно, соответствующие атрибуты и операции как раз и являются теми свойствами, посредством которых выполняются обязанности класса. Моделирование классов лучше всего начинать с определения обязанностей сущностей, которые входят в словарь системы. На этом этапе особенно полезными будут такие методики, как применение CRC-карточек и анализ прецедентов. В принципе число обязанностей класса может быть произвольным, но на практике хорошо структурированный класс имеет, по меньшей мере, одну обязанность; с другой стороны, их не должно быть и слишком много. При уточнении модели обязанности класса преобразуются в совокупность атрибутов и операций, которые должны наилучшим образом обеспечить их выполнение. Графически обязанности изображают в особом разделе в нижней части пиктограммы класса (см. рис. 2.19).

Рис. 2.19. Обязанности

Отношения

При построении абстракций вы довольно скоро обнаружите, что классы редко существуют автономно. Как правило, они разными способами взаимодействуют между собой. Это значит, что моделируя систему, вы должны будете не только идентифицировать сущности, составляющие ее словарь, но и описать их соотношения друг с другом. Сущест



Поделиться:


Последнее изменение этой страницы: 2017-02-08; просмотров: 2953; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.148.105.127 (0.016 с.)