ТОП 10:

Manifold destiny. A legendary problem and the battle over who solved it

Grigory Perelman is indeed reclusive. He left his job as a researcher at the Steklov Institute of Mathematics, in St. Petersburg, last December; he has few friends; and he lives with his mother in a small apartment on the outskirts of the city. Although he had never granted an interview before, he was cordial and frank when we visited him, in late June, taking us on a long walking tour of the city. “I’m looking for some friends, and they don’t have to be mathematicians,” he said. The week before the conference, Perelman had spent hours discussing the Poincaré conjecture with Sir John M. Ball, the fifty-eight-year-old president of the International Mathematical Union, the discipline’s influential professional association. At the end of May, a committee of nine prominent mathematicians had voted to award Perelman a Fields Medal for his work on the Poincaré, and Ball had gone to St. Petersburg to persuade him to accept the prize in a public ceremony at the I.M.U.’s quadrennial congress, in Madrid, on August 22nd.

Over a period of eight months, beginning in November, 2002, Perelman posted a proof of the Poincaré on the Internet in three installments. Like a sonnet or an aria, a mathematical proof has a distinct form and set of conventions. It begins with axioms, or accepted truths, and employs a series of logical statements to arrive at a conclusion. If the logic is deemed to be watertight, then the result is a theorem. Unlike proof in law or science, which is based on evidence and therefore subject to qualification and revision, a proof of a theorem is definitive. Judgments about the accuracy of a proof are mediated by peer-reviewed journals; to insure fairness, reviewers are supposed to be carefully chosen by journal editors, and the identity of a scholar whose paper is under consideration is kept secret. Publication implies that a proof is complete, correct, and original.

By these standards, Perelman’s proof was unorthodox. It was astonishingly brief for such an ambitious piece of work; logic sequences that could have been elaborated over many pages were often severely compressed. Moreover, the proof made no direct mention of the Poincaré and included many elegant results that were irrelevant to the central argument. But, four years later, at least two teams of experts had vetted the proof and had found no significant gaps or errors in it. A consensus was emerging in the math community: Perelman had solved the Poincaré.

After giving a series of lectures on the proof in the United States in 2003, Perelman returned to St. Petersburg. Since then, although he had continued to answer queries about it by e-mail, he had had minimal contact with colleagues and, for reasons no one understood, had not tried to publish it. Still, there was little doubt that Perelman, who turned forty on June 13th, deserved a Fields Medal. As Ball planned the I.M.U.’s 2006 congress, he began to conceive of it as a historic event. More than three thousand mathematicians would be attending, and King Juan Carlos of Spain had agreed to preside over the awards ceremony. The I.M.U.’s newsletter predicted that the congress would be remembered as “the occasion when this conjecture became a theorem.” Ball, determined to make sure that Perelman would be there, decided to go to St. Petersburg.



Проанализируйте и обсудите несколько вариантов перевода. Везде ли удалось обойтись без смысловых потерь, и каким образом таких потерь можно избежать?




Замечательный исследователь французского языка В.Г. Гак в одной из своих книг высказывал мысли, относящиеся не только к русскому и французскому языку, но и к переводу в целом. Русскому языку сравнительно просто выражать различные оттенки значения благодаря наличию множества продуктивных суффиксов субъективной оценки (уменьшительно-ласкательных, уничижительных и т.п.). Но не только морфологические, а и собственно лексические средства выражения экспрессии переводчику следует использовать; например, знаменитый (или даже именитый) имеет положительный оттенок, известный – нейтральное слово, пресловутый – слово с отрицательным оттенком значения [Гак 2010: 99].

Сравните также следующие пары слов: тишина – тишь, бросаться в сторону – шарахаться, глупость – неразумие, бежать – нестись, усилия – потуги; второе слово каждой пары намного живописнее первого. И одна из труднейших задач переводчика состоит в том, чтобы подобрать слова, подобные вторым из приведённых пар, которых часто нет в словарях, но без которых русский перевод утратит свою выразительность и превратится в бесплотный скелет, не способный отобразить всю глубину смысла [Там же: 101]. И такие средства выражения экспрессии характерны далеко не только для художественных и публицистических текстов.


Упражнение 1. Переведите текст, стараясь тщательно подбирать слова и выражения, наиболее подходящие для его стиля и тематики.


Последнее изменение этой страницы: 2017-02-08; Нарушение авторского права страницы

infopedia.su не принадлежат авторские права, размещенных материалов. Все права принадлежать их авторам. Обратная связь - (0.009 с.)