Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Цифровое моделирование больших систем.Содержание книги
Поиск на нашем сайте
Характерные особенности больших систем.
При проектировании таких сложных объектов, как, например, технологических комплексов, АСУ производством, вычислительных комплексов и т.д., возникают задачи, требующие исследования количественных закономерностей функционирования этих объектов. Для решения таких задач используются расчётные и экспериментальные методы. Ранее от расчетов не требовалось особо высокой точности, т.к. погрешность вычислений компенсировалась увеличением объема натурного эксперимента, созданием ряда опытных образцов и «доведения» изделия в результате доработок. Если проводится разработка большого комплекса, то использование натурного эксперимента становится проблематичным из-за колоссального роста затрат временем и средств. Особенности больших систем: 1. наличие большого числа элементов системы; 2. сложный характер связей между элементами; 3. сложность функций выполняемых системой; 4. наличие сложноорганизованного управления; 5. необходимость учёта воздействия с окружающей средой и воздействия случайных факторов; 6. высокая степень автоматизации работ в системе и применение ЭВМ в качестве основного управляющего звена. В существующем многообразии созданных и проектируемых систем выделить с достаточной точностью класс сложных систем невозможно. Отнесение какой либо системы к разряду сложных или простых весьма условно и, в основном, определяются той задачей, которая ставится перед исследователем при ее изучении. Таким образом, одна и та же система в зависимости от целей ее анализа рассматривается как сложная или как простая.
Аналитические модели
В аналитических моделях – процессы функционирования элементов сложной системы записываются в виде некоторых функциональных соотношений (алгебраических, интегральных, дифференциальных) или логических условий. Аналитическая модель может исследоваться одним из следующих способов: 1. аналитический способ –получение в обобщённом виде явных зависимостей для искомых величин; 2. численный способ – если нет возможности решить имеющиеся уравнение в общем виде, но можно получить численный результат при конкретных начальных данных; 3. качественный способ –нет решения в явном виде, но можно найти некоторые свойства решения, например, оценить его устойчивость. При моделировании на ЭВМ вместо аналитического способа исследования используется алгоритмическое описание процесса функционирования модели. Наиболее полное, а в некоторых случаях и исчерпывающее исследование можно провести в том случае, если получены явные зависимости, связывающие искомые величины с параметрами системы и начальными условиями. Однако, их удается получить лишь для сравнительно простых систем. Поскольку обобщенная система достаточно сложна, аналитическое исследование сталкивается с непреодолимыми трудностями. Поэтому, стремясь получить аналитическое решение, идут на упрощение первоначальной модели, чтобы иметь возможность изучать некоторые общие свойства системы. В отдельных случаях исследователя могут удовлетворить и те выводы, которые можно получить при качественных методах анализа математической модели. При исследовании сложной системы, часто для получения аналитического решения задачи приходится вводить жесткие ограничения на ее модель и прибегать к упрощениям. При этом приходится пренебрегать некоторыми особенностями системы, от чего созданная модель уже перестает быть средством изучения рассматриваемой большой системы. И все же, часто стремятся к построению такой аналитической модели, которая обеспечивает хотя бы и грубое, но простое и достаточно удобное решение рассматриваемой задачи. Оно обычно используется как ориентировочное до получения более точных решений другими методами. Численные методы применимы к значительно более широкому классу функциональных уравнений, однако получаемые решения носят частный характер, и не всегда есть возможность получить из них выводы общего характера. В зависимости от используемого математического аппарата и применяемых методов формализации различают следующие виды аналитических моделей: модели математического программирования, сетевые модели, модели физических явлений, модели массового обслуживания, модели теории игр и т.д.
Имитационные модели.
В имитационных моделях моделирующий алгоритм приближенно воспроизводит процесс-оригинал в смысле его функционирования во времени, причем имитируются элементарные явления, составляющие процесс, с сохранением их логической структуры и последовательности протекания во времени. Сущность рассматриваемого метода моделирования состоит в реализации на ЭВМ специального алгоритма, который воспроизводит формализованный процесс сложной системы. Моделирующий алгоритм позволяет по исходным данным, содержащим сведения о начальном состоянии процесса (входной информации) и его параметрах, получить информацию о состояниях процесса в произвольные моменты времени. В моделирующем алгоритме можно выделить три основных типа подалгоритмов, выполняющих одну из следующих функций: 1. моделирование какого-либо элементарного подпроцесса исследуемого процесса; 2. учет взаимодействия элементарных подпроцессов и объединение их в единый процесс; 3. обеспечение согласованной работы отдельных подалгоритмов при реализации модели на ЭВМ.
Влияние случайных факторов.
Влияние случайных факторов на течение процесса имитируется с помощью случайных чисел с заданными или вырабатываемыми в процессе моделирования вероятностными характеристиками.
Пример имитационной модели.
При моделировании процессов не обязательно преобразовывать математическую модель в специальную систему уравнений относительно искомых величин. В ряде случаев достаточно имитировать сами явления, описываемые математической моделью, с сохранением их логической структуры, последовательности чередования во времени, а иногда и физического содержания, с помощью моделирующих установок или ЭВМ. В противоположность аналитическим и численным методам содержание операций, осуществляемых при имитационном моделировании, слабо зависит от того, какие величины выбрали в качестве искомых.
Модель стратегии обслуживания автобуса. Пусть Е - основное состояние автобуса (исправен и осуществляется N-рейсов за смену); A - состояние, когда автобус нуждается в мелком профилактическом ремонте в продолжение времени одногорейса; B - состояние, когда автобус нуждается в немедленном текущем ремонте длительностью в одну смену. Предположим, что а - вероятность перехода автобуса из состояния Е в состояние А, b - вероятность перехода автобуса из состояния А в состояние В. Требуется выбрать одну из следующих стратегий обслуживания автобуса: 1. стратегия a - как только автобус переходит в состояние А он ремонтируется; 2. стратегия b - автобус работает до тех пор пока не перейдет в состояние В. Лучшая стратегия та, которая даёт наибольшее число рейсов в день. Предполагается, что каждый день автобус выходит на линию в состояние Е, т.е. при любой стратегии автобус заканчивающий N рейсов в состояние А или В ночью ремонтируется. При моделирование формируется выборка случайного числа x и с помощью соответствующей таблицы имитируется состояние, в котором находился автобус в конце рейса. В начале имитируется один рейс при стратегии a, потом при b и т.д., после чего подсчитывается среднее число рейсов в день, фактически выполненных автобусом при стратегиях a и b и их разность. Метод имитации позволяет производить изменения в модели простым изменением схемы алгоритма. Полученные результаты обрабатываются статистическими методами, и на основе статистических данных принимается решения о преимуществе одной стратегии перед другой.
|
||||
Последнее изменение этой страницы: 2017-02-07; просмотров: 304; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.223.171.83 (0.009 с.) |