Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Структурирование при цифровом моделировании.Содержание книги
Поиск на нашем сайте
Как уже отмечалось, для успешного моделирования (особенно сложных систем) желательно в той или иной мере структурировать объект. Для этого объект разбивается на блоки. Разумеется, можно использовать традиционный путь: используя структурную схему системы регулирования, свернуть её по правилам теории автоматического регулирования (ТАУ), получить общую передаточную функцию, а затем получить общее уравнение. Однако это не будет наглядной моделью отражающей физическую реальность. Для сравнения выберем два варианта составления дифференциальных уравнений: по отдельным звеньям и по связи их в общую цифровую модель. В качестве примера возьмём систему второго порядка состоящую из двух апериодических звеньев, которая можнт быть представлена в свёрнутом (рис. 37) и развёрнутом (рис. 38) виде.
Рис. 55 Система регулирования в свёрнутом виде.
Рис. 56 Система регулирования в развёрнутом виде.
I. Выведем передаточную функцию системы представленной на рисунке 37:
(79)
или
(80)
Известно, что уравнение высшего порядка может быть сведено к системе уравнений первого порядка. Переход во временную область:
(81)
Введём вспомогательную переменную:
(82)
с учётом вспомогательной переменной перепишем уравнение (81)
(83)
Таким образом, записав передаточную функцию и выполнив подстановку вспомогательной переменной, получим систему дифференциальных уравнений описывающих свернутую систему второго порядка:
(84)
Аналогично можно составить систему уравнений для более высоких порядков. Необходимо отметить, что замена переменной справедлива в том случае, если в числителе передаточной функции нет оператора , его наличие вызывает осложнение при выводе общего уравнения. II. Запишем систему уравнений для развёрнутой системы представленной на рисунке 38.
(85)
Используя передаточные функции (см. (85)) выведем математическое описание в операторной форме:
(86)
Переход во временную область для представления математического описания в форме дифференциальных уравнений:
(87)
Математические описания (84) и (87) по форме эквивалентны. Для доказательства эквивалентности необходимо ввести в систему (87) промежуточную переменную . После соответствующих преобразований система (87) будет полностью эквивалентна системе уравнений (84). Составление уравнений по звеньям имеет преимущество, т.к. не требуется вводить вспомогательные переменные; и составление уравнений по звеньям имеет наглядность физических процессов протекающих в отдельных структурах.
Выбор вспомогательных переменных для передаточных функций, содержащих оператор в числителе
Оператор содержится в числителе таких передаточных функций, как форсирующие звенья. Передаточная функция форсирующего звена:
(88)
или
(89)
Во временной области:
(90)
В принципе это уравнение применять нежелательно, т.к. в правой части содержится производная входного сигнала, которую необходимо вычислять численным методом, либо нужна функциональная зависимость входного сигнала от времени и тогда производную можно задать аналитически. К тому же такое уравнение обычными заменами переменных не сможем привести к форме Коши. Уравнение (89) разделим на оператор :
(91)
Введём замену переменных:
(92)
(93) или
(94)
(95)
Выполнив замену переменных и осуществив переход во временную область, получим математическое описание форсирующего звена состоящую из двух дифференциальных и одного алгебраического уравнений:
(96)
По функциям и находят искомую функцию . Как уже отмечалось, выбор промежуточных переменных позволяет получить различную форму записи дифференциальных уравнений. Например, в методе переменных состояний используется следующий подход для вывода дифференциальных уравнений. Используем передаточную функцию (88), преобразуем её:
(97)
Введём вспомогательную функцию:
(98)
Следовательно,
(99)
и
(100)
введём дополнительную вспомогательную переменную , получим:
(101)
Выразим Е через х (см. выражение 100):
(102)
Окончательно система запишется в виде:
(103)
Гибридное моделирование
Преимущества аналогового и цифрового моделирования могут быть объединены принципом аналого-цифровым моделированием (или как его еще называют - гибридным). Суть данного вида моделирования заключается в том, что уравнения описывающие объект решаются аналоговым способом, а коэффициенты - цифровым моделированием. Области применения гибридного моделирования: 1) Там, где с вместе с высоким быстродействием предъявляются высокие требования к точности; 2) Там, где требуется автоматизация получения результатов; 3) Тенденция перехода к гибридному моделированию связанно с широким применением вычислительных машин в контурах регулирования.
Система MATLAB
Поскольку в настоящее время имеется большое количество пакетов программного обеспечения для решения задач связанных с математическими вычислениями и моделированием разнообразных динамических систем, рассмотрим более подробно один из них, а именно систему высокопроизводительных численных вычислений и визуального представления результатов Matlab, в которую входят программные средства моделирования динамических систем Simulink.
|
||||||
Последнее изменение этой страницы: 2017-02-07; просмотров: 239; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.147.193 (0.006 с.) |