Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Графики и основные свойства элементарных функций↑ Стр 1 из 2Следующая ⇒ Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Графики и основные свойства элементарных функций
График линейной функции Линейная функция задается уравнением . График линейной функций представляет собой прямую. Для того, чтобы построить прямую достаточно знать две точки. Пример 1 Построить график функции . Найдем две точки. В качестве одной из точек выгодно выбрать ноль. Если , то Берем еще какую-нибудь точку, например, 1. Если , то При оформлении заданий координаты точек обычно сводятся в таблицу: Две точки найдены, выполним чертеж: Не лишним будет вспомнить частные случаи линейной функции:
1) Линейная функция вида () называется прямой пропорциональностью. Например, . График прямой пропорциональности всегда проходит через начало координат. Таким образом, построение прямой упрощается – достаточно найти всего одну точку. 2) Уравнение вида задает прямую, параллельную оси , в частности, сама ось задается уравнением . График функции строится сразу, без нахождения всяких точек. То есть, запись следует понимать так: «игрек всегда равен –4, при любом значении икс». 3) Уравнение вида задает прямую, параллельную оси , в частности, сама ось задается уравнением . График функции также строится сразу. Запись следует понимать так: «икс всегда, при любом значении игрек, равен 1». Некоторые спросят, ну зачем вспоминать 6 класс?! Так-то оно, может и так, только за годы практики я встретил добрый десяток студентов, которых ставила в тупик задача построения графика вроде или . Построение прямой – самое распространенное действие при выполнении чертежей.
Кубическая парабола Кубическая парабола задается функцией . Вот знакомый со школы чертеж: Область определения – любое действительное число: . Область значений – любое действительное число: . Функция является нечётной. Если функция является нечётной, то ее график симметричен относительно начала координат. Аналитически нечётность функции выражается условием . Выполним проверку для кубической функции, для этого вместо «икс» подставим «минус икс»: Функция не ограничена. На языке пределов функции это можно записать так: , Кубическую параболу тоже эффективнее строить с помощью
Наверняка, вы заметили, в чем ещё проявляется нечетность функции. Если мы нашли, что , то при вычислении уже не нужно ничего считать, автоматом записываем, что . Эта особенность справедлива для любой нечетной функции. Теперь немного поговорим о графиках многочленов. График любого многочлена третьей степени () принципиально имеет следующий вид: Многочлены 4-ой, 6-ой и других четных степеней имеют график принципиально следующего вида:
График функции Выполним чертеж: Область определения: . Область значений: . То есть, график функции полностью находится в первой координатной четверти. Функция не ограничена сверху. Или с помощью предела: При построении простейших графиков с корнями также уместен поточечный способ построения, при этом выгодно подбирать такие значения «икс», чтобы корень извлекался нацело: На самом деле хочется разобрать еще примеры с корнями, например, , но они встречаются значительно реже. Я ориентируюсь на более распространенные случаи, и, как показывает практика, что-нибудь вроде приходиться строить значительно чаще. Если возникнет необходимость выяснить, как выглядят графики с другими корнями, то, рекомендую заглянуть в школьный учебник или математический справочник.
График гиперболы Опять же вспоминаем тривиальную «школьную» гиперболу . Выполним чертеж: Область определения: . Область значений: . Запись обозначает: «любое действительное число, исключая ноль» В точке функция терпит бесконечный разрыв. Или с помощью односторонних пределов: , . Немного поговорим об односторонних пределах. Запись обозначает, что мы бесконечно близко приближаемся по оси к нулю слева. Как при этом ведёт себя график? Он уходит вниз на минус бесконечность, бесконечно близко приближаясь к оси . Именно этот факт и записывается пределом . Аналогично, запись обозначает, что мы бесконечно близко приближаемся по оси к нулю справа. При этом ветвь гиперболы уходит вверх на плюс бесконечность, бесконечно близко приближаясь к оси . Или коротко: . Такая прямая (к которой бесконечно близко приближается график какой-либо функции) называется асимптотой. В данном случае ось является вертикальной асимптотой для графика гиперболы при . Будет ГРУБОЙ ошибкой, если при оформлении чертежа по небрежности допустить пересечение графика с асимптотой. Также односторонние пределы , говорят нам о том, что гипербола не ограничена сверху и не ограничена снизу. Исследуем функцию на бесконечности: , то есть, если мы начнем уходить по оси влево (или вправо) на бесконечность, то «игреки» стройным шагом будут бесконечно близко приближаться к нулю, и, соответственно, ветви гиперболы бесконечно близко приближаться к оси . Таким образом, ось является горизонтальной асимптотой для графика функции , если «икс» стремится к плюс или минус бесконечности. Функция является нечётной, а, значит, гипербола симметрична относительно начала координат. Данный факт очевиден из чертежа, кроме того, легко проверяется аналитически: . График функции вида ( ) представляют собой две ветви гиперболы. Если, то гипербола расположена в первой и третьей координатных четвертях (см. рисунок выше). Если, то гипербола расположена во второй и четвертой координатных четвертях. Пример 3 Построить правую ветвь гиперболы Используем поточечный метод построения, при этом, значения выгодно подбирать так, чтобы делилось нацело: Выполним чертеж:
График косинуса Построим график функции График косинуса – это та же самая синусоида, сдвинутая вдоль оси на влево. Косинус – это функция четная, ее график симметричен относительно оси , и справедлив следующий факт: . То есть, минус перед аргументом косинуса можно безболезненно убирать (или наоборот, ставить). В отличие от синуса в косинусе минус «бесследно пропадает». Для решения практических задач нужно знать и помнить следующие значения косинуса: , , . Графики и основные свойства элементарных функций
График линейной функции Линейная функция задается уравнением . График линейной функций представляет собой прямую. Для того, чтобы построить прямую достаточно знать две точки. Пример 1 Построить график функции . Найдем две точки. В качестве одной из точек выгодно выбрать ноль. Если , то Берем еще какую-нибудь точку, например, 1. Если , то При оформлении заданий координаты точек обычно сводятся в таблицу: Две точки найдены, выполним чертеж: Не лишним будет вспомнить частные случаи линейной функции:
1) Линейная функция вида () называется прямой пропорциональностью. Например, . График прямой пропорциональности всегда проходит через начало координат. Таким образом, построение прямой упрощается – достаточно найти всего одну точку. 2) Уравнение вида задает прямую, параллельную оси , в частности, сама ось задается уравнением . График функции строится сразу, без нахождения всяких точек. То есть, запись следует понимать так: «игрек всегда равен –4, при любом значении икс». 3) Уравнение вида задает прямую, параллельную оси , в частности, сама ось задается уравнением . График функции также строится сразу. Запись следует понимать так: «икс всегда, при любом значении игрек, равен 1». Некоторые спросят, ну зачем вспоминать 6 класс?! Так-то оно, может и так, только за годы практики я встретил добрый десяток студентов, которых ставила в тупик задача построения графика вроде или . Построение прямой – самое распространенное действие при выполнении чертежей.
|
||||
Последнее изменение этой страницы: 2016-12-12; просмотров: 530; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.224.32 (0.01 с.) |