Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Подставляя (7.10) в (7.9), получимСодержание книги
Поиск на нашем сайте
или . (7.11) Из соотношения (7.10) вытекает, что t<t', т.е. длительность события, происходящего в некоторой точке, наименьшая в той инерциальной системе отсчета, относительно которой эта точка неподвижна. Этот результат может быть еще истолкован следующим образом: интервал времени t', отсчитанный по часам в системе К', с точки зрения наблюдателя в системе К, продолжительнее интервала t, отсчитанного по его часам. Следовательно, часы, движущиеся относительно инерциальной системы отсчета идут медленнее покоящихся часов. На основании относительности понятий "неподвижная" и "движущаяся" системы соотношения для t и t' обратимы. Из (7.11) следует, что замедление хода часов становится заметным лишь при скоростях, близких к скорости света в вакууме. Релятивистский эффект замедления хода часов является совершенно реальным и получил экспериментальное подтверждение при изучении нестабильных, самопроизвольно распадающихся элементарных частиц в опытах с p-мезонами. Среднее время жизни покоящихся p-мезонов (по часам, движущимся вместе с ними) t»2,2×10-8 с. Следовательно, p-мезоны, образующиеся в верхних слояхатмосферы(на высоте» 30 км) и движущиеся со скоростью, близкой кскорости света, должны были бы проходить расстояние ст=6,6 м, т.е. не могли бы достигать земной поверхности, что противоречит действительности.
3. Длина тел в разных системах отсчета. Рассмотрим стержень, расположенный вдоль оси х' и покоящийся относительно системы К'. Длина стержня в системе К' будет =x2'-x1', где x1' и x2' - не изменяющиеся со временем t' координаты начала и конца стержня, а индекс 0 показывает, что в системе отсчета К' стержень покоится. Определим длину этого стержня в системе К, относительно которой он движется со скоростью . Для этого необходимо измерить координаты его концов х1 и х2 в системе К в один и тот же момент времени t. Их разность =х2 - х1 и даст длину стержня в системе К. Используя преобразования Лоренца (7.8), получим , т.е. . (7.12) Таким образом, длина стержня, измеренная в системе, относительно которой он движется, оказывается меньше длины, измеренной в системе, относительно которой стержень покоится. Если стержень покоится в системе К, то, определяя ее длину в системе К, опять-таки придем к выражению (7.12). Из выражения (7.12) следует, что линейный размер тела, движущегося относительно инерциальной системы отсчета, уменьшается в направлении движения в раз, т.е. так называемое лоренцово сокращение длины тем больше, чем больше скорость движения. Из второго и третьего уравнений преобразования Лоренца (7.8) следует, что y'2-y’1=y2-y1 и z¢2 -z¢1=z2-z1, т.е. поперечные размеры тела не зависят от скорости его движения и одинаковы во всех инерциальных системах отсчета. Таким образом, линейные размеры тела наибольшие в той инерциальной системе отсчета, относительно которой тело покоится.
4. Релятивистский закон сложения скоростей. Рассмотрим движение материальной точки в системе К', в свою очередь движущейся относительно системы К со скоростью . Определим скорость этой же точки в системе К. Если в системе К движение точки в каждый момент времени t определяется координатамих, у, z, а в системе К' в момент времени t - координатами х', у', z', то
и . представляет собой соответственно проекции на оси х, у, zи х', у', z' вектора скорости рассматриваемой точки относительно систем К и К'. Согласно преобразованиям Лоренца (7.8), произведя соответствующие преобразования, получаем релятивистский закон сложения скоростей специальной теории относительности:
Если материальная точка движется параллельно относительно осих, то скорость и относительно системы К совпадает с ux, а скорость u' относительно К'- сu'x. Тогда закон сложения скоростей примет вид (7.14) Легко убедиться в том, что, если скорости , u' и u малы по сравнению со скоростью света с, то формулы (7.13) и (7.14) переходят в закон сложения скоростей в классической механике (7.4). Таким образом, законы релятивистской механики в предельном случае для малых скоростей (по сравнению со скоростью света) переходят в законы классической физики, которая, следовательно, является частным случаем механики Эйнштейна для малых скоростей. Релятивистский закон сложения скоростей подчиняется второму постулату Эйнштейна. Действительно, если u'=с, то формула (7.14) примет вид =с (аналогично можно показать, что при u=с скорость u' также равна с). Этот результат свидетельствует в том, что релятивистский закон сложения скоростей находится в согласии с постулатами Эйнштейна. Докажем также, что если складываемые скорости сколь угодно близки к скорости света с, тоих результирующая скорость будет всегда меньше или равна с. В качестве примера рассмотрим предельный случай u'= =c. После подстановки в формулу (7.14) получим u=с. Таким образом, при сложении любых скоростей результат не может превысить скорости света в вакууме. Скорость света в вакууме есть предельная скорость, которую невозможно превысить.
Интервал между событиями Преобразования Лоренца и следствия из них приводят к выводуоботносительности длин и промежутков времени, значение которых вразличных системах отсчета разное. В то же время относительный характер длин и промежутков времени в теории Эйнштейна означает относительность отдельных компонентов какой-то реальной физической величины, не зависящей от системы отсчета, т.е. являющейся инвариантной по отношению к преобразованиям координат. В четырехмерном пространстве Эйнштейна, в котором каждое событие характеризуется четырьмя координатами (х,у, z, t), такой физической величиной является интервал между двумя событиями: , (7.15) где, - расстояние между точками обычного трехмерного пространства, в которомэти события произошли. Введя обозначение t12 =t2 –t1, получим . Покажем, что интервал между двумя событиями одинаков вовсех инерциальных системах отсчета. Обозначив Dt=t2 –t1, , , , выражение (7.15) можно записать в виде . Интервал между теми же событиями в системе К' равен . (7.16) Согласно преобразованиям Лоренца (7.8), Подставив эти значения в (7.16), после элементарных преобразований получим, что , т.е. (S'12)=S12 Обобщая полученные результаты, можно сделать вывод, что интервал, определяя пространственно-временные соотношения между событиями, является инвариантом при переходе от одной инерциальной системы отсчета к другой. Инвариантность интервала означает, что, несмотря на относительность длин и промежутков времени, течение событий носит объективный характер и не зависит от системы отсчета. Теория относительности, таким образом, сформулировала новое представление о пространстве и времени, обобщенное далее в диалектическом материализме. Пространственно-временные отношения являются не абсолютными величинами, как утверждала механика Галилея-Ньютона, а относительными. Следовательно, представления об абсолютном пространстве и времени являются несостоятельными. Кроме того, инвариантность интервала между двумя событиями свидетельствует о том, что пространство и время органически связаны между собой и образуют единую форму существования материи – пространство – время. Пространство и время не существуют вне материи и независимо от нее. Дальнейшее развитие относительности (общая теория относительности) показало, что свойства пространства-времени в данной области определяются действующими в ней полями тяготения.
|
||||||
Последнее изменение этой страницы: 2016-12-12; просмотров: 373; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.88.111 (0.007 с.) |