Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Соотношение неопределённости Гейзенберга для координаты и импульса↑ ⇐ ПредыдущаяСтр 4 из 4 Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Квантовая механика – теория, устанавливающая способ описания и законы движения микрочастиц в заданных внешних полях. Если мерить разные физические величины, то выясняется, что некоторые физ. Величины можно померить в одно время, а другие – нельзя. Волновые свойства частиц и возможность задать для частицы лишь вероятность ее пребывания в данной точке пространства приводят к тому, что сами понятия координаты частицы и ее скорости (или импульса) могут применяться в квантовой механике в ограниченной мере. В этом, вообще говоря, нет ничего удивительного. В классической физике понятие координаты в ряде случаев тоже непригодно для определения положения объекта в пространстве. Например, не имеет смысла говорить о том, что электромагнитная волна находится в данной точке пространства или что положение фронта волновой поверхности на воде характеризуется координатами x, y, z. Корпускулярно-волновая двойственность свойств частиц, изучаемых в квантовой механике, приводит к тому, что в ряде случаев оказывается невозможным, в классическом смысле, одновременно характеризовать частицу ее положением в пространстве (координатами) и скоростью (или импульсом). Так, например, электрон (и любая другая микрочастица) не может иметь одновременно точных значений координаты x и компоненты импульса. Неопределенности значений x и удовлетворяют соотношению:
Из (4.2.1) следует, что чем меньше неопределенность одной величины (x или), тем больше неопределенность другой. Возможно, такое состояние, в котором одна их переменных имеет точное значение (), другая переменная при этом оказывается совершенно неопределенной (– ее неопределенность равна бесконечности), и наоборот. Таким образом, для микрочастицы не существует состояний, в которых ее координаты и импульс имели бы одновременно точные значения. Отсюда вытекает и фактическая невозможность одновременного измерения координаты и импульса микрообъекта с любой наперед заданной точностью. Соотношение, аналогичное (4.2.1), имеет место для y и, для z и, а также для других пар величин (в классической механике такие пары называются канонически сопряженными). Обозначив канонически сопряженные величины буквами A и B, можно записать:
Утверждение о том, что произведение неопределенностей значений двух сопряженных переменных не может быть по порядку меньше постоянной Планка h, называется соотношением неопределенностей Гейзенберга. Энергия и время являются канонически сопряженными величинами. Поэтому для них также справедливо соотношение неопределенностей:
Это соотношение означает, что определение энергии с точностью должно занять интервал времени, равный, по меньшей мере, . Волновые функции Функция описывает вероятность найти частицу в данной точке пространства. Первый постулат квантовой механики: Состояние частицы в квантовой механике описывается заданием волновой функции , являющейся функцией пространственных координат и времени. Аппарат, разработанный в квантовой механике, позволяет, проводя некоторые операции над волновой функцией , получать полную информацию о движении микрочастицы. Вероятностный смысл волновой функции. Невозможность задания состояния микрочастицы указанием в любой момент времени ее координат и скорости и отказ от траекторного способа описания движения приводит к вероятностному способу описания движения микрочастицы. Это означает, что в квантовой механике, определяя состояние частицы, следует указать способ определения вероятности обнаружения частицы в различных точках пространства в данный момент времени. В 1926 г. М.Борн так сформулировал вероятностный смысл волновой функции в квантовой механике: Квадрат модуля волновой функции определяет плотность вероятности того, что в момент времени частица может быть обнаружена в точке пространства с координатами , и . Следовательно
Отметим, что волновая функция в общем случае является комплекснозначной функцией, то есть содержит действительную и мнимую части. Физический смысл, поэтому, имеет не сама волновая функция, а ее квадрат модуля - действительная величина, которую во многих случаях удобно находить, умножая волновую функцию на комплексно сопряженную ей функцию , так как из теории комплексных чисел следует, что . Уравнение Шрёдингера 1. Свободное одномерное движение частицы, т.е. частица находится в поле с постоянным потенциалом и ее потенциальная энергия равна нулю. В этом случае уравнение (III.9) примет вид:
, (III.10)
или, после несложных преобразований,
, (III.11)
где - некоторая постоянная. Решением такого дифференциального уравнения (дифференциальное уравнение второго порядка с постоянными коэффициентами) хорошо известно и в общем случае имеет вид:
, (III.12)
где и - произвольные постоянные. Легко убедится, что в данном случае на E не накладывается никаких ограничений и энергетический спектр непрерывен.
Теперь несколько усложним задачу и рассмотрим 2. Движение частицы в яме с бесконечно высокими стенками. В этом случае потенциальная энергия будет равна (III.13)
где а - ширина потенциальной ямы. Уравнение Шредингера (III.9) разобьется на два: для интервала x<0 и x>a и примет вид:
, (III.14)
и может быть удовлетворено лишь функцией , т.е. частица не может находится за пределами потенциальной ямы. Для интервала 0<x<a уравнение Шредингера будет идентично (III.11), но с граничными условиями
(III.15)
Решением уравнения (III.11) при дополнительных условиях (III.15) будет функция (III.12), однако константы и будут уже не произвольными, а принимать вполне определенные значения: из условия следует
(III.16)
это возможно только когда
Рассмотрим теперь второе граничное условие - :
(III.17)
или
Представим теперь экспоненту в виде тригонометрических функций согласно формуле Эйлера:
(III.18) (необходимо помнить, что )
Приведя подобные, мы это уравнение сведем к виду
, где (III.19)
Равенство (III.19) справедливо при условии
, или (III.20)
где n - любое целое число.
Итак, волновая функция частицы в потенциальной яме принимает вид
(III.21)
С другой стороны, из
(III.22)
следует, что энергия частицы может принимать следующие значения:
(III.23)
т.е. энергия частицы является дискретной. 3. Рассмотрим теперь одномерное движение частицы по оси x под воздействием упругой возвращающей силы , где k - силовая постоянная. Такая система называется линейным гармоническим осциллятором.
Положим для определенности , где - частота колебаний, можно записать уравнение Шредингера для линейного гармонического осциллятора:
(III.24)
Если ввести обозначения и , то (III.24) примет вид:
(III.25)
Непосредственно найти решения этого уравнения нельзя, поэтому предположим, что , (это справедливо, когда амплитуда колебаний не велика). В этом случае (III.25) перейдет в уравнение
(III.26)
которое имеет решения вида . Однако поскольку волновая функция должна быть ограниченной, то физический смысл имеет только экспонента с отрицательным показателем:
(III.27)
Подстановка этой функции в исходное уравнение (III.25) дает
(III.28)
При четных значениях величины , это уравнение есть хорошо известное уравнение Эрмита, решениями которого для n=0,1,2... являются функции , называемыми полиномами Эрмита. Для низших n полиномы Эрмита имеют вид:
(III.29)
.........................................
а для собственных функций и собственных значений гармонического осциллятора мы получим выражения:
(III.30)
(III.31)
Квантовые числа Квантовое число n – главное. Оно определяет энергию электрона в атоме водорода и одноэлектронных системах (He+, Li2+ и т. д.). В этом случае энергия электрона где n принимает значения от 1 до ∞. Чем меньше n, тем больше энергия взаимодействия электрона с ядром. При n = 1 атом водорода находится в основном состоянии, при n > 1 – в возбужденном. В многоэлектронных атомах электроны с одинаковыми значениями n образуют слой или уровень, обозначаемый буквами K, L, M, N, O, P и Q. Буква K соответствует первому уровню, L – второму и т. д.
Орбитальное квантовое число l характеризует форму орбиталей и принимает значения от 0 до n – 1. Кроме числовых l имеет буквенные обозначения
Электроны с одинаковым значением l образуют подуровень. Квантовое число l определяет квантование орбитального момента количества движения электрона в сферически симметричном кулоновском поле ядра. Квантовое число ml называют магнитным. Оно определяет пространственное расположение атомной орбитали и принимает целые значения от –l до +l через нуль, то есть 2l + 1 значений. Расположение орбитали характеризуется значением проекции вектора орбитального момента количества движения Mz на какую-либо ось координат (обычно ось z): Все вышесказанное можно представить таблицей:
Орбитали одного подуровня (l = const) имеют одинаковую энергию. Такое состояние называют вырожденным по энергии. Так p-орбиталь – трехкратно, d – пятикратно, а f – семикратно вырождены. Граничные поверхности s-, p-, d-, f- орбиталей показаны на рис. 2.1.
s-Орбитали сферически симметричны для любого n и отличаются друг от друга только размером сферы. Их максимально симметричная форма обусловлена тем, что при l = 0 и μl = 0. p-Орбитали существуют при n ≥ 2 и l = 1, поэтому возможны три варианта ориентации в пространстве: ml = –1, 0, +1. Все p-орбитали обладают узловой плоскостью, делящей орбиталь на две области, поэтому граничные поверхности имеют форму гантелей, ориентированных в пространстве под углом 90° друг относительно друга. Осями симметрии для них являются координатные оси, которые обозначаются px, py, pz. d-Орбитали определяются квантовым числом l = 2 (n ≥ 3), при котором ml = –2, –1, 0, +1, +2, то есть характеризуются пятью вариантами ориентации в пространстве. d-Орбитали, ориентированные лопастями по осям координат, обозначаются dz² и dx²–y², а ориентированные лопастями по биссектрисам координатных углов – dxy, dyz, dxz. Семь f-орбиталей, соответствующих l = 3 (n ≥ 4), изображаются в виде граничных поверхностей, приведенных на рис. 2.1. Квантовые числа n, l и ml не полностью характеризуют состояние электрона в атоме. Экспериментально установленно, что электрон имеет еще одно свойство – спин. Упрощенно спин можно представить как вращение электрона вокруг собственной оси. Спиновое квантовое число ms имеет только два значения ms = ±1/2, представляющие собой две проекции углового момента электрона на выделенную ось. Электроны с разными ms обозначаются стрелками, направленными вверх и вниз . В многоэлектронных атомах, как и в атоме водорода, состояние электрона определяется значениями тех же четырех квантовых чисел, однако в этом случае электрон находится не только в поле ядра, но и в поле других электронов. Поэтому энергия в многоэлектронных атомах определяется не только главным, но и орбитальным квантовым числом, а вернее их суммой: энергия атомных орбиталей возрастает по мере увеличения суммы n + l; при одинаковой сумме сначала заполняется уровень с меньшим n и большим l. Энергия атомных орбиталей возрастает согласно ряду
Итак, четыре квантовых числа описывают состояние электрона в атоме и характеризуют энергию электрона, его спин, форму электронного облака и его ориентацию в пространстве. При переходе атома из одного состояния в другое происходит перестройка электронного облака, то есть изменяются значения квантовых чисел, что сопровождается поглощением или испусканием атомом квантов энергии.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-12; просмотров: 901; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.51.72 (0.009 с.) |