Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Центральные и вписанные углыСодержание книги
Поиск на нашем сайте
Вписанный угол (ACB) ― угол, вершина которого лежит на окружности, а стороны являются ее хордами: · измеряется половиной дуги, на которую он опирается; · вписанные углы, опирающиеся на одну и ту же дугу, равны; · вписанный угол, опирающийся на диаметр — прямой. Центральный угол (AOB) ― угол, образованный двумя радиусами: · измеряется дугой, на которую опирается; · центральный угол в два раза больше вписанного, опирающегося на ту же дугу.
Хорды и секущие Произведение длин отрезков пересекающихся хорд равны: · если хорды АВ и СD пересекаются в точке М, то АМ ВМ = СМ DМ. Произведение длин отрезков секущей равно квадрату длины отрезка касательной: · если через точку М проведена секущая к окружности и касательная, причем точки А и В ― точки пересечения окружности с секущей, а С ― точка касания, то АМ ВМ = СМ 2.
Длина окружности и дуги Длина окружности: L = 2 πR = πD, R ― радиус окружности, D ― диаметр. Длина дуги окружности: l = = , α ― градусная мера дуги.
Площадь круга и сектора Сектор — часть круга, ограниченная двумя радиусами и дугой окружности. Sкруга = πR 2 Sсектора = , α ― градусная мера дуги.
Комбинации с окружностью 1. Окружность называется вписанной в многоугольник, если все его стороны касаются окружности. 2. Центром вписанной окружности является точка пересечения биссектрис. 3. Центром описанной окружности является точка пересечения серединных перпендикуляров. 4. В любой треугольник можно вписать окружность, около любого треугольника можно описать окружность. 5. Радиус вписанной окружности в треугольнике: r = , p ― полупериметр треугольника. 6. Радиус описанной окружности в треугольнике: R = . 7. В четырехугольник можно вписать окружность, если суммы противоположных сторон равны. 8. Вокруг четырехугольника можно описать окружность, если сумма противоположных углов равна 180°. 9. Из всех параллелограммов окружность можно вписать только в ромб и квадрат. 10. Из всех параллелограммов окружность можно описать только около прямоугольника и квадрата.
Равнобедренный треугольник В различных разделах математики существуют «звёзды» ― например, уже хорошо известное вам число пи или квадратные уравнения. Свои звёзды есть и среди треугольников ― это равнобедренный, равносторонний и прямоугольный треугольники, соответственно. Сейчас мы про них и поговорим. Итак, начнём с равнобедренного треугольника. Равнобедренный треугольник ― это треугольник, у которого две стороны равны (на нашем рисунке АВ = АС). Равные стороны в таком треугольнике называются боковыми (АВ и АС), а оставшаяся третья сторона ― основанием (ВС, соответственно). Естественно, он попал в список наших «звёзд» неслучайно ― у него есть ряд очень удобных свойств. Например, в равнобедренном треугольнике углы при основании равны (углы АВС и АСВ). Кроме того, в равнобедренном треугольнике медиана, проведённая к основанию, является биссектрисой и высотой. То есть она не только делит противолежащую сторону пополам (ВМ = МС), но и падает на неё под углом 90°, а кроме того делит угол, из которого выходит, пополам (углы ВАМ и МАС равны). Посмотрим на пример конкретной задачи. В равнобедренном треугольнике внешний угол равен 80°, необходимо найти все углы треугольника. Сразу возникает вопрос ― внешний угол при каком угле треугольника? Предположим, что это внешний угол при угле В (с нашего первого рисунка). Но в таком случае выходит, что сам ∠ В = 100° (по сумме смежных углов). Значит, и ∠ С = 100°, так как треугольник равнобедренный. Но тогда сумма только двух углов получается 200°, чего быть никак не может. Значит, речь идёт о внешнем угле при угле А треугольника. Тогда ∠ А = 100°, а ∠ В = ∠ С = 40°.
Равносторонний треугольник После знакомства с равнобедренным треугольником имеет смысл поближе узнать его близкого родственника ― равносторонний треугольник. Равносторонний треугольник ― это треугольник, у которого все три стороны равны. Кроме равенства сторон в таком треугольнике равны и все углы (каждый из которых по 60° ― так как 180°: 3 = 60°). Если проводить аналогию с равнобедренным треугольником, в равностороннем любая сторона одновременно является и основанием, и боковой стороной. За счёт этого, в равностороннем медиана, проведённая из любого угла, будет являться биссектрисой и высотой (другими словами, равносторонний треугольник с любой стороны является равнобедренным).
Прямоугольный треугольник Особняком стоит наш третий гость ― прямоугольный треугольник. В отличие от первых двух, он не определяется равенством сторон. Зато в таком треугольнике один угол всегда равен 90° (собственно, это и есть прямой угол, дающий название всему треугольнику). Сторона, лежащая против такого угла, называется гипотенузой (сторона АВ на нашем рисунке), а две другие стороны ― катетами (АС и ВС, соответственно). Естественно, в любом прямоугольном треугольнике гипотенуза всегда больше катета (не забываем о том, что против большего угла лежит большая сторона, и наоборот). Прямоугольный треугольник тоже обладает рядом замечательных свойств. К примеру, именно для него верна знаменитая теорема Пифагора (квадрат гипотенузы равен сумме квадратов катетов, или, по примеру нашего рисунка, АВ 2= АС 2 + ВС 2). Центр описанной вокруг прямоугольного треугольника окружности всегда лежит на гипотенузе (что несложно доказуемо, так как в этом случае прямой угол С становится вписанным, а против вписанного угла в 90° всегда лежит диаметр ― значит, гипотенуза является диаметром). Кроме того, у прямоугольного треугольника существует ещё ряд более мелких, но не менее важных свойств, которые вам предстоит узнать в процессе курса. Стоит ещё отметить такой нюанс: существует равнобедренный прямоугольный треугольник, своеобразный гибрид. В таком треугольнике катеты равны (так как равенства катета и гипотенузы не может быть, не забываем об этом), а все углы легко считаются ― раз один угол 90°, то два оставшихся угла получаются по 45°. Таким образом, вы успешно познакомились с тремя “особыми треугольниками”, так часто встречающимися в геометрии. В процессе курса вы узнаете о них гораздо больше, а пока имеет смысл закрепить полученные знания в домашнем задании.
Параллелограммы Мы уже успели познакомиться с особыми треугольниками, самое время поближе узнать “звёзд” среди четырёхугольников ― параллелограммы и их вариации. Сегодня мы будем говорить о самом параллелограмме, ромбе, прямоугольнике и квадрате. Начнём, естественно, с параллелограмма. Параллелограмм ― это четырёхугольник, у которого противоположные стороны параллельны (АВ || CD, AC || BD). У параллелограмма есть ряд замечательных свойств, которые и делают его таким особенным. В любом параллелограмме противоположные стороны равны (АВ = СD, AC = BD). Кроме того, в параллелограмме противоположные углы равны (∠ А = ∠ D, ∠ B = ∠ C), а из параллельности сторон можно говорить и о равенстве частей углов (например, ∠ DAB = ∠ ADC; ∠ BCD = ∠ ABC). Ещё одно крайне полезное свойство ― диагонали параллелограмма точкой пересечения делятся пополам (АО = OD, CO = OB). У параллелограмма есть ряд частных случаев, которые не менее интересны, чем он сам. Например ― прямоугольник. Прямоугольник ― это параллелограмм, у которого все углы прямые. Кроме свойств параллелограмма, у прямоугольника есть и несколько своих. Диагонали прямоугольника равны (AD = BC), а стороны прямоугольника являются его высотами. Ромб ― это параллелограмм, у которого все стороны равны. Естественно, ромбу присущи все те же свойства, что и параллелограмму. Вдобавок, диагонали ромба являются биссектрисами его углов и пересекаются под прямым углом (AD ⊥ BC). Интересно, что само слово “ромб” происходит от древнегреческого “бубен”, потому что в те времена бубны делали именно в форме бубна или квадрата. И раз уж мы упомянули квадрат, то давайте поговорим о нём чуть подробнее. Квадрат ― это параллелограмм, у которого все стороны равны и все углы равны (AB = BC = CD = DA и ∠ A = ∠ B = ∠ C = ∠ D = 90°). Центры вписанной и описанной окружностей квадрата совпадают и одновременно являются точкой пересечения диагоналей (т. О). Стоит отметить, что любой квадрат является ромбом и прямоугольником, но не любой ромб или прямоугольник является квадратом. Обратите внимание, что мы определяли каждую из фигур через предыдущую. И это сделано не просто так. Определение «Квадрат ― это параллелограмм, у которого все стороны равны и все углы равны», означает в том числе, что всё, что мы говорили в связи с параллелограммом, верно и для квадрата. А так как квадрат сочетает в себе признаки ромба и прямоугольника, то он обладает также и их свойствами. Поздравляем! Теперь вы знакомы не только с особыми треугольниками, но и с различными интересными четырёхугольниками. Гораздо подробнее о них (а также их свойствах) вы узнаете на лекциях, а сейчас имеет смысл отточить знания на проверочных заданиях.
Векторы Сложение двух векторов Сумма двух векторов находится с помощью правила треугольника или правила параллелограмма: = + . Правило треугольника: Правило параллелограмма: Для любых трех точек А, В, С справедливо соотношение: + = . Вычитание векторов Разность двух векторов и — это вектор , который в сумме с вектором дает вектор : + = ⇒ = – . Вектор можно найти также, складывая с вектором вектор — , противоположный вектору : = + (– ). Координаты вектора · Координатами вектора называются разности координат конца и начала вектора. Координаты вектора не изменяются при параллельном переносе. У равных векторов соответствующие координаты равны. На плоскости: Координаты вектора (аx; ay): аx = x 2 – x 1; ay = y 2 – y 1. Модуль вектора: | | = . В пространстве: Координаты вектора (аx; ay; az): аx = x 2 – x 1; ay = y 2 – y 1; az = z 2 – z 1. Модуль вектора: | | = .
|
||||
Последнее изменение этой страницы: 2016-09-20; просмотров: 1116; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.198.75 (0.01 с.) |