Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Рекомбинационная (комбинативная) изменчивость

Поиск

Рекомбинация у бактерий – перенос генетического материала от клетки-донора к клетке-реципиенту или от одного репликона к другому. Она является важнейшим фактором эволюции. В результате происходит обмен генетической информацией между отдельными особями. Рекомбинации могут наблюдаться на уровне любых живых организмов – от прокариотов до высших эукариотов.

Прокариоты не обладают половым типом размножения. При попадании к реципиенту части ДНК донора образуется неполная зигота – мерозигота. В этом случае образуется только один рекомбинант, основу генома которого представляет геном реципиента с включенным фрагментом ДНК донора.

Выделяют следующие основные типы рекомбинаций:

Общая рекомбинация. Она происходит между гомологичными последовательностями ДНК.

Сайт-специфическая рекомбинация. Это рекомбинация по небольшой комплементарной последовательности нуклеиновой кислоты.

Незаконная рекомбинация. Этот вид рекомбинации происходит между последовательностями ДНК, не имеющими структурного сходства.

Основные процессы, обеспечивающие обмен генетической информацией, можно проследить на примере общей рекомбинации.

Выявлено, что есть особые группы генов, участвующих в рекомбинациях: rесА, recВ, reсС, recD. Они кодируют в нормальных клетках образование специфических ферментов- рекомбиназ (RecA, RecBCD).

RecА – полифункциональный белок, который синтезируется в неактивной форме. Он активируется при связывании с ДНК. RecА действует как ДНК-хеликаза (расплетает двухцепочечную ДНК), а также обладает протеолитической активностью – расщепляет ряд репрессоров – например, снимает репрессию с профага в нуклеоиде. Белок RесА катализирует переориентацию цепей ДНК с образованием структуры Холлидея (см. ниже).

Мутации в гене recА могут уменьшать частоту рекомбинации более чем в 1000 раз.

RecBCD-нуклеаза кодируется тремя генами – гесВ, гесС и гесD. Используя энергию АТФ RecBCD-нуклеаза временно деспирализует двойную цепь (дуплекс) дезоксирибонуклеиновой кислоты (проявляет хеликазную активность). При этом образуется фрагмент одноцепочечной ДНК, где затем связывается RесА. Кроме того, она специфически разрезает структуру Холлидея для завершения рекомбинации.

Рекомбинация начинается в результате обмена одноцепочечными участками между родительскими двухцепочечными дуплексными молекулами ДНК. Это обусловлено взаимодействием гомологичных (комплементарных) участков ДНК в родительских молекулах. Соединенные родительские молекулы ДНК образуют структуру креста («крест Р. Холлидея»). После образования такой структуры центр ее может перемещаться вдоль цепей ДНК как застежка-«молния». При этом размыкаются водородные связи между комплементарными цепями внутри родительской молекулы ДНК и замыкаются связи между цепями из различных родительских молекул ДНК. Образуется так называемый гетеродуплексный участок в обеих родительских молекулах ДНК. Вращение структуры Холлидея вокруг точки перекреста приводит к образованию различных рекомбинантных молекул ДНК.

У бактерий существует 3 основных способа, которые приводят к образованию рекомбинантных молекул – трансформация, трансдукция и конъюгация.

 

Трансформация

Трансформация это перенос генетической информации из донорской клетки в реципиентную при помощи искусственно выделенной или высвободившейся при лизисе клетки естественным путем ДНК.

Путем трансформации в реципиентную клетку можно передать следующие свойства: капсулообразование, устойчивость к антибиотикам, устойчивость к сульфаниламидным препаратам, способность синтезировать различные аминокислоты и др.

Наибольшей трансформирующей активностью обладает нативная ДНК. Трансформирующая роль ДНК была установлена в опытах О.Эвери, К.Мак-Леод и М.Мак-Карти в 1944 г. в пробирках с использованием очищенной ДНК, полученной из капсульных клеток пневмококков IIIS типа.

Началом в изучении трансформации послужили опыты Ф.Гриффитса с культурами пневмококка. Пневмококки способны к диссоциации, образуя капсульные S-формы и бескапсульные R-формы. Когда пневмококки в R-форме попадают в организм животного, например мыши, то животное переносит заражение вследствие поглощения бактериальных клеток фагоцитами. Однако мышь, зараженная бактериями S-типа, неизбежно погибает из-за наличия капсулы, препятствующей фагоцитозу. В 1928 г. Фредерик Гриффитс показал, что если мыши ввести пневмококки типа IIR вместе с убитыми нагреванием бактериями типа IIIS, то мыши погибают от инфекции. Исследование выделенных от погибших животных культур показало, что они принадлежат к типу IIIS. Контрольные эксперименты продемонстрировали, что по отдельности ни введение живых R-форм, ни инъекция убитых нагреванием пневмококков IIIS не приводит к гибели мышей. Гриффитс заключил, что непатогенные клетки штамма IIR могут трансформироваться в патогенные убитыми нагреванием пневмококками штамма IIIS. Далее было обнаружено, что трансформация непатогенных штаммов пневмококка в патогенные может осуществляться и в лабораторной культуре клеток.

Было высказано предложение, что трансформирующим агентом, передающим способность вырабатывать капсулы, является полисахаридная субстанция капсул. Позднее в бесклеточных структурах – в экстрактах капсульных бактерий – был выявлен фактор трансформации. Он оказался чувствительным к нагреванию (80оС) и осаждался спиртом.

Эвери, Мак-Леод и Мак-Карти доказали, что трансформирующий фактор устойчив к РНКазе, действию протеолитических ферментов, но чувствителен к ДНКазе, обладает высокой молекулярной массой. Отсюда они пришли к выводу, что этот фактор – ДНК.

Трансформация проходит в несколько этапов.

Первоначально происходит адсорбция ДНК на поверхности реципиентной клетки. Чаще всего с донорской ДНК в реципиентную клетку передается только один ген. Это связано с невозможностью передачи при трансформации протяженного фрагмента ДНК (обычно он не превышает 1/100 длины нуклеоида), т. е. включает один ген или одну группу сцепления. Чем выше гомологичность цепей ДНК донора и реципиента, тем эффективнее гибридизация.

Затем следует энергозависимая стадия – донорская ДНК проникает в реципиентную клетку, причем реципиентная клетка должна быть жизнеспособной с активным обменом веществ, должна находиться в стадии «компетентности», т.е. в ней появляется особый белок – «фактор компетентности». Он располагается в оболочке и цитоплазматической мембране бактерий. Этот фактор связывается с ДНК донорской клетки за счет разницы в зарядах.

Далее происходит специфическое взаимодействие (синапс) – соединение, а затем и встраивание ДНК донора в ДНК реципиента. Данный процесс осуществляется с помощью ферментов рекомбиназ (по типу общей рекомбинации). 50% проникшей ДНК распадается, часть превращается в однонитчатую. В компетентной клетке также образуются однонитчатые разрывы в ДНК реципиента. ДНК донорской клетки включается в ДНК реципиента и формируются участки гибридной двойной спирали ДНК.

После этого происходит репликация ДНК реципиента с включенным участком ДНК донора и образование клетки с новыми свойствами.

 

Трансдукция

Трансдукция – перенос генетического материала из клетки донора в клетку реципиента через трансдуцирующий бактериофаг. Последний представляет собой умеренный фаг, который в состоянии профага получил участок ДНК от донорской клетки в результате неточного вырезания своей последовательности из генома клетки-донора. При этом бактериофаг становится дефектным, т.к. теряет часть собственной нуклеиновой кислоты. Такой фаг упаковывается в свою оболочку, выделяется из клетки и может проникать в клетку-реципиент.

Этот вид рекомбинаций открыт Н. Циндером и Дж. Ледербергом в 1951 г.

Различают 3 вида трансдукции:

1. Неспецифическая;

2. Специфическая;

3. Абортивная.

Неспецифическая трансдукция. При этом трансдуцирующий бактериофаг передает в реципиентную клетку любой ген донорской клетки и включает его в гомологичную область ДНК реципиента путем рекомбинации этого гена с нуклеоидом. Трансдуцирующий бактериофаг выступает лишь в роли переносчика, в нуклеоид не встраивается, и лизогенизации реципиентной культуры не происходит.

Специфическая трансдукция. Здесь бактериофаг переносит строго определенный ген (или гены) от клетки донора к реципиенту и встраивает его в определенном участке ДНК реципиента путем сайт-специфической рекомбинации. В этом случае бактериофаг может встраиваться в нуклеоид клетки-реципиента, т.е. происходит лизогенизация бактерии. При этом такие клетки становятся невосприимчивыми, как и все лизогенные клетки, к последующему заражению гомологичным вирулентным фагом.

Обычно при специфической трансдукции переносятся бактериальные гены, сцепленные с геномом встроенного бактериофага. Чаще всего они окаймляют (фланкируют) профаг. Для E.coli и фага лямбда это гены gal и bio, контролирующие, соответственно, метаболизм галактозы и синтез витамина биотина.

Абортивная трансдукция. В этом случае фрагмент ДНК донора, доставленный при трансдукции, не включается в ДНК реципиента и остается в цитоплазме. Клетка не лизогенизируется, а новый признак по мере деления клетки исчезает.

 

Конъюгация

Конъюгация – передача генетического материала из клетки донора в клетку реципиента при непосредственном контакте клеток через цитоплазматический мостик (рис. 9).

Это явление впервые было установлено Д.Ледербергом и Э.Татумом в 1946 г. при совместном культивировании двух штаммов кишечной палочки. В конъгации участвуют клетки, действующие в качестве доноров и реципиентов генетического материала. Перенос генетического материала является односторонним.

Не все клетки могут быть донорскими. Они должны содержать особый репликон, ответственный за конъюгацию – F-фактор (фактор фертильности, половой фактор).

F+ клетки были названы генетическими донорами, т.к. они содержат данный фактор. F - - реципиентные клетки не содержат полового фактора, но могут приобрести его в процессе конъюгации.

Как уже упоминалось, F-фактор является конъюгативным репликоном и содержит tra-оперон. Данный оперон обеспечивает процесс конъюгации (происходит образование половых ворсинок – «секс-пилей», формирование конъюгационной трубки и т.д.). Белки половых ворсинок обладают адресной функцией, распознают реципиентную клетку и обеспечивают связь с ее специфическими рецепторами.

Если F-фактор находится в автономном состоянии в цитоплазме донора, то в процессе конъюгации происходит его репликация по механизму «катящегося кольца». Линейная копия F-фактора переходит по конъюгационной трубке в клетку-реципиент, и та приобретает свойства генетического донора.

F-фактор может находиться и в интегрированном в хромосому клетки-донора состоянии. Такая бактерия получила название Hfr-клетки (англ. high frequency of recombination – высокая частота рекомбинации). При этом у донора образуется кольцевая хромосома, включающая F-фактор.

Hfr-клетка способна к конъюгации. При этом также происходит репликация ее генома по механизму «катящегося кольца» со встроенным F-фактором. Tra-оперон F-фактора обеспечивает процесс межклеточного взаимодействия. Репликация нуклеоида начинается у F-фактора и бактериальная хромосома начинает переходить в клетку-реципиент. F-фактор в этом случае передается последним. Учитывая длину и непрочность конъюгационной трубки, полный перенос копии нуклеоида донора происходит весьма редко. F-фактор остается в донорской клетке. В этом случае клетка-реципиент не приобретает свойств генетического донора. Однако она получает гены из нуклеоида бактерии-донора. В случае рекомбинации донорской ДНК с нуклеоидом реципиента образуется гибридный нуклеоид – мерозигота,и реципиент приобретает новые свойства.

 



Поделиться:


Последнее изменение этой страницы: 2016-09-20; просмотров: 767; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.25.14 (0.007 с.)