Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Фазы деполяризации и реполяризации потенциала действияСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
В клетках синусового и атриовентрикулярного узлов скорость деполяризации в нулевую фазу намного ниже (1—20 В/с), чем в нормальных волокнах Пуркинье или клетках рабочего миокарда (см. рис. 3.9). Амплитуда потенциалов действия также весьма невелика (60—80 мВ); в некоторых клетках пик потенциала действия не превышает 0 мВ [3]. По сравнению с другими сердечными клетками более низкая скорость нарастания и меньшая амплитуда потенциала действия узловых клеток отражают значительно меньшую величину входящего тока перед нулевой фазой деполяризации в этих клетках. Имеющиеся в настоящее время данные однозначно свидетельствуют о том, что меньший по величине входящий ток в клетках синусового и атриовентрикулярного узлов течет не через быстрые натриевые каналы, а через медленные каналы и переносится ионами натрия и кальция [45—47]. Такие потенциалы действия с нарастанием, зависящим от медленного входящего тока, часто называют «медленными ответами» в отличие от более обычных «быстрых ответов», нарастание в которых зависит от быстрого натриевого тока [20]. Из-за столь малой величины суммарного входящего тока и медленной деполяризации в нулевую фазу скорость проведения медленных потенциалов действия через узлы всегда низка (0,01—0,1 м/с); именно такое медленное проведение в определенных условиях может обусловить возникновение нарушений ритма в тканях узлов. Как отмечалось ранее, медленные каналы для входящего тока имеют совершенно иные характеристики зависимости их воротного механизма от времени и потенциала по сравнению с быстрыми натриевыми каналами. Медленный входящий ток активируется и инактивируется значительно дольше, чем быстрый натриевый ток. Поэтому после нарастания потенциала действия в узлах медленный входящий ток инактивируется только медленно, способствуя деполяризации мембраны в течение всей фазы плато потенциала действия. Активация зависимого от времени и потенциала выходящего калиевого тока вместе с инактивацией медленного входящего тока, по-видимому, вызывает реполяризацию клеток узлов, как это было описано для окончания потенциала действия в других сердечных клетках.
Рис. 3.9. Сравнение потенциалов действия синусового и АВ-узла (указаны стрелками) с потенциалами действия рабочего миокарда и волокон Пуркинье. Запись потенциалов действия произведена в следующих областях сердца (начиная сверху): синусовый узел, предсердие, атриовентрикулярный узел, пучок Гиса, волокно Пуркинье в ложном сухожилии, терминальное волокно Пуркинье и рабочий миокард желудочков. Заметьте, что возрастание скорости и амплитуда потенциалов действия синусового и АВ-узла меньше аналогичных параметров в других клетках [3].
Проводимость медленных каналов для входящего тока восстанавливается после реполяризации мембраны также гораздо медленнее, чем проводимость быстрых натриевых каналов [20, 21]. В отличие от других сердечных клеток в узловых клетках при нанесении преждевременного стимула во время конечной фазы реполяризации не отмечается возникновения потенциала действия. В действительности достаточная инактивация проводимости медленных каналов для входящего тока может сохраняться даже после полной реполяризации в клетках, ставших абсолютно рефрактерными к стимуляции [48]. Реактивация происходит постепенно в течение всей диастолы; преждевременные импульсы, вызванные вскоре после полной реполяризации, имеют более медленное нарастание, меньшую амплитуду, чем нормальные импульсы, и распространяются медленнее. Преждевременные импульсы, вызванные позднее во время диастолы, имеют соответственно более быстрое нарастание, более высокую амплитуду и, следовательно, проводятся быстрее [49]. Такое поведение отражает длительность процесса реактивации медленных каналов. Связанный с этим продолжительный рефрактерный период узловой ткани, а также значительное замедление проведения через нее преждевременных импульсов могут быть важными факторами инициации некоторых нарушений сердечного ритма.
Автоматизм
Клетки синусового узла обычно являются автоматическими, так что каждый последующий потенциал действия возникает в результате спонтанной диастолической деполяризации; клетки АВ-узла также способны возбуждаться автоматически, особенно если они не связаны с окружающим миокардом предсердий [50]. Это означает, по-видимому, что электротоническое взаимодействие клеток узла и предсердий подавляется автоматически через предсердно-узловое проведение. Автоматическая активность клеток синусового узла не может быть связана с тем же пейсмекерным током, который был ранее описан в волокнах Пуркинье. Изменения состояния воротного механизма мембранной проводимости, ответственной за нормальный автоматизм волокон Пуркинье, происходят только в диапазоне мембранных потенциалов от —90 до —60 мВ [36]. Такие изменения проводимости вряд ли способны объяснить развитие спонтанной диастолической деполяризации в клетках синусового узла, поскольку максимальный диастолический потенциал этих клеток обычно менее отрицателен, чем —60 мВ. Однако имеющиеся данные говорят о том, что пейсмекерный ток в синусовом узле переносится, по крайней мере частично, ионами К+ [38] и уменьшение этого выходящего тока при наличии постоянного фонового входящего тока приводит к постепенной деполяризации мембраны. Кроме того, важную роль играет, вероятно, входящий ток, который активируется при гиперполяризации и обозначается if [38].
|
||||
Последнее изменение этой страницы: 2016-09-20; просмотров: 534; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.149.237.231 (0.009 с.) |