Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Объединённый сигнал - потенциал действияСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Объединённый сигнал может возникнуть только в таком участке мембраны, где достаточно много ионных каналов для натрия. В этом отношении идеальным объектом является аксонный холмик - место отхождения аксона от тела клетки, поскольку именно здесь самая высокая во всей мембране плотность каналов для натрия. Такие каналы являются потенциалзависимыми, т.е. открываются лишь тогда, когда исходное значение потенциала покоя достигнет критического уровня. Типичное для среднестатистического нейрона значение потенциала покоя составляет приблизительно -65 мВ, а критический уровень деполяризации соответствует примерно -55 мВ. Стало быть, если удастся деполяризовать мембрану аксонного холмика с -65 мВ до -55 мВ, то там возникнет потенциал действия. Деполяризовать мембрану способны входные сигналы, т.е. либо постсинаптические потенциалы, либо рецепторные. В случае рецепторных потенциалов местом возникновения объединённого сигнала является ближайший к чувствительным окончаниям перехват Ранвье, где наиболее вероятна деполяризация до критического уровня. В связи с этим надо учесть, что каждый чувствительный нейрон имеет множество окончаний, являющихся ветвями одного отростка. И, если в каждом из этих окончаний при действии стимула возникает очень небольшой по амплитуде рецепторный потенциал и распространяется к перехвату Ранвье с уменьшением амплитуды, то он является лишь малой частью общего деполяризующего сдвига. От каждого чувствительного окончания в одно и то же время перемещаются к ближайшему перехвату Ранвье эти небольшие рецепторные потенциалы, а в области перехвата все они суммируются. Если общая сумма деполяризующего сдвига будет достаточной, то в перехвате возникнет потенциал действия. Постсинаптические потенциалы, возникающие на дендритах, так же невелики, как и рецепторные потенциалы и так же уменьшаются при распространении от синапса до аксонного холмика, где может возникнуть потенциал действия. Кроме того, на пути распространения постсинаптических потенциалов по телу клетки могут оказаться тормозные гиперполяризующие синапсы и потому возможность деполяризации мембраны аксонного холмика на 10 мВ кажется маловероятной. Тем не менее, этот результат регулярно достигается в результате суммации множества небольших постсинаптических потенциалов, возникающих одновременно в многочисленных синапсах, образованных дендритами нейрона с окончаниями аксонов пресинаптических клеток.
Таким образом, объединённый сигнал возникает, как правило, вследствие суммации одновременно образовавшихся многочисленных местных потенциалов. Такая суммация происходит в том месте, где особенно много потенциалзависимых каналов и поэтому легче достигается критический уровень деполяризации. В случае интеграции постсинаптических потенциалов таким местом является аксонный холмик, а суммация рецепторных потенциалов происходит в ближайшем от чувствительных окончаний перехвате Ранвье (или близко расположенным к ним участком немиелинизированного аксона). Область возникновения объединённого сигнала называется интегративной или триггерной (от англ. trigger - спусковой крючок). Английский термин удачен своей метафорической выразительностью, так как накопление небольших деполяризующих сдвигов молниеносно трансформируется в интегративной зоне в потенциал действия, который является максимальным электрическим потенциалом клетки и возникает по принципу "всё или ничего". Это правило надо понимать так, что деполяризация ниже критического уровня не приносит никакого результата, а при достижении этого уровня всегда, независимо от силы стимулов, обнаруживается максимальный ответ: третьего не дано.
Проведение потенциала действия Как уже говорилось, амплитуда входных сигналов пропорциональна силе подействовавшего стимула или количеству выделившегося в синапсе нейромедиатора - такие сигналы называют градуальными. Их длительность определяется длительностью стимула или присутствия медиатора в синаптической щели. Амплитуда и длительность потенциала действия от этих факторов не зависят: оба этих параметра всецело определяются свойствами самой клетки. Стало быть, любая комбинация входных сигналов, любой вариант суммации, при единственном условии деполяризации мембраны до критического значения, вызывает один и тот же стандартный образец потенциала действия в триггерной зоне. Он всегда имеет максимальную для данной клетки амплитуду и примерно одинаковую длительность, сколько бы раз ни повторялись вызывающие его условия.
Возникнув в интегративной зоне, потенциал действия быстро распространяется по мембране аксона. Это происходит благодаря появлению локального электрического тока. Поскольку деполяризованный участок мембраны оказывается иначе заряженным, чем соседствующий с ним, между полярно заряженными участками мембраны возникает электрический ток. Под действием этого локального тока деполяризуется до критического уровня соседний участок, что вызывает появление потенциала действия и в нём. В случае миелинизированного аксона таким соседним участком мембраны является ближайший к триггерной зоне перехват Ранвье, затем следующий, и потенциал действия начинает "перепрыгивать" от одного перехвата к другому со скоростью, достигающей 100 м/с. Разные нейроны могут многим отличаться друг от друга, но возникающие в них потенциалы действия различить очень трудно, а в большинстве случаев и невозможно. Это в высшей степени стереотипный сигнал у самых разных клеток: сенсорных, интернейронов, моторных. Эта стереотипия свидетельствует о том, что сам потенциал действия не содержит никаких сведений о природе породившего его стимула. О силе стимула свидетельствует частота возникающих потенциалов действия, а определением природы стимула занимаются специфические рецепторы и хорошо упорядоченные межнейронные связи. Таким образом, возникший в триггерной зоне потенциал действия быстро распространяется по ходу аксона к его окончанию. Это передвижение связано с образованием локальных электрических токов, под влиянием которых потенциал действия как бы заново возникает в соседнем участке аксона. Параметры потенциала действия при проведении по аксону нисколько не меняются, что позволяет передавать информацию без искажений. Если аксоны нескольких нейронов оказываются в общем пучке волокон, то по каждому из них возбуждение распространяется изолированно.
Выходной сигнал Выходной сигнал адресуется другой клетке или одновременно нескольким клеткам и в подавляющем большинстве случаев представляет собой выделение химического посредника - нейротрансмиттера или медиатора. В пресинаптических окончаниях аксона заранее запасённый медиатор хранится в синаптических пузырьках, которые накапливаются в специальных участках - активных зонах. Когда потенциал действия добирается до пресинаптического окончания, содержимое синаптических пузырьков путём экзоцитоза опорожняется в синаптическую щель. Химическими посредниками передачи информации могут служить разные вещества: небольшие молекулы, как, например, ацетилхолин или глутамат, либо достаточно крупные молекулы пептидов - все они специально синтезируются в нейроне для передачи сигнала. Попав в синаптическую щель, медиатор диффундирует к постсинаптической мембране и присоединяется к её рецепторам. В результате связи рецепторов с медиатором изменяется ионный ток через каналы постсинаптической мембраны, а это приводит к изменению значения потенциала покоя постсинаптической клетки, т.е. в ней возникает входной сигнал - в данном случае постсинаптический потенциал. Таким образом, почти в каждом нейроне, независимо от его величины, формы и занимаемой в цепи нейронов позиции, можно обнаружить 4 функциональные области: локальную рецептивную зону, интегративную, зону проведения сигнала и выходную или секреторную зону (Рис. 3.3).
Глия Во всех органах человеческого тела, кроме мозга, функционирующие клетки удерживаются вместе межклеточным веществом соединительной ткани. В нервной системе эту роль выполняет глия (от греч. глия - клей), клетки которой образуются из общих с нейронами предшественниц на раннем этапе развития мозга. Глия создаёт опору для нейронов, объединяет отдельные элементы нервной системы, но, в то же время, изолирует друг от друга разные группы нейронов, а также большую часть их аксонов. Тем самым она формирует структуру мозга. Численность клеток глии превышает количество нейронов в мозгу приблизительно в 10 раз. Эти клетки отличаются друг от друга по внешнему виду и по выполняемой функции (Рис. 3.4). Самыми распространёнными среди клеток глии являются астроциты, например, в мозолистом теле они составляют 1/4 всех клеток глии. У астроцита неправильной, звёздчатой формы тело с многочисленными и относительно длинными отростками, одни из которых направлены к нейронам, а другие - к кровеносным капиллярам. Эти отростки расширяются на концах, образуя т.н. астроцитарную ножку. На поверхности капилляра отростки соседних астроцитов плотно смыкаются друг с другом и практически полностью обвёртывают кровеносный сосуд. Подобная изоляция сосуда является одним из способов формирования гематоэнцефалического барьера - границы между кровью и нервной тканью, закрытой для многих находящихся в крови веществ. Другие отростки астроцита почти целиком обёртывают тела нейронов. Если нейрон возбуждается длительно, вокруг него повышается концентрация ионов калия, а это может уменьшить возбудимость соседних нейронов. Астроциты предупреждают такую возможность, поглощая излишки калия, - тем самым они выполняют функцию буфера. Некоторые клетки глии при этом деполяризуются, а поскольку они связаны между собою щелевыми контактами, между деполяризованными и находящимися в покое клетками возникает ток. Это, однако, не приводит к возбуждению, так как в мембране клеток глии очень мало потенциалзависимых каналов для натрия или кальция. Несмотря на то, что повышение концентрации ионов калия у астроцитов изменяет некоторые их свойства, в настоящее время нет достаточных оснований считать их прямыми участниками переноса нервных импульсов. Две другие разновидности клеток глии: олигодендроциты и шванновские клетки похожи друг на друга по внешнему виду и по выполняемой функции. У них маленькое тело и относительно небольшие, как бы расплющенные отростки, которые многократно обёртывают аксоны нейронов, тем самым обеспечивая им изолирующий миелиновый футляр. Миелин - это жироподобное вещество, которое выполняет роль электроизолятора. При утрате миелиновой оболочки вследствие, например, демиелинизирующих заболеваний, передача сигналов из одной части мозга в другую серьёзно нарушается, что обычно приводит к инвалидности.
Олигодендроциты создают миелиновую изоляцию аксонов в центральной нервной системе, причём каждый олигодендроцит обслуживает, как правило, несколько аксонов. Шванновские клетки покрывают миелином волокна периферической нервной системы, причём каждая шванновская клетка занимается только одним аксоном. В белом и сером веществе мозга рассеяны клетки микроглии. В отличие от других клеток глии в мозгу они - чужаки, пришельцы. Они образуются из моноцитов крови, сумевших пройти сквозь стенки капилляров в мозг, чтобы в нём поселиться (в других тканях такие оседлые моноциты называются макрофагами). Подобно макрофагам иных тканей клетки микроглии выполняют роль мусорщиков: они захватывают и разрушают обломки разрушающихся клеток, эта работа становится особенно заметной на фоне повреждений мозга. Особую роль клетки глии выполняют, по-видимому, во время развития мозга. Некоторые их разновидности регулируют направление перемещения нейронов в определённые регионы растущего мозга, а также направление роста аксонов. Другие клетки глии возможно участвуют в питании нервных клеток путём регуляции кровотока, а тем самым транспорта глюкозы и кислорода.
Резюме В выдающемся разнообразии индивидуальных признаков отдельных нейронов обнаруживаются общие черты, которые позволяют классифицировать нервные клетки по их строению и выполняемой функции. Электрические сигналы распространяются по нейрону только в одном направлении. В каждом нейроне можно выделить четыре морфологические области, выполняющие разные функциональные задачи. В каждой из этих областей возникает особая разновидность сигналов, используемых для передачи информации. Клетки глии, так же, как и нейроны, различаются по своему строению и выполняемой функции.
Вопросы для самоконтроля 31. Под буквами А-Д обозначена различная величина диаметра аксонов: по какому из них возбуждение должно распространяться быстрее? А. 0,5 мкм; Б. 1 мкм; В. 3 мкм; Г. 6 мкм; Д. 9 мкм. 32. С какой частью постсинаптической клетки чаще всего вступают в контакт терминали аксона пресинаптической клетки? А. Тело; Б. Сома; В. Перикарион; Г. Дендриты; Д. Аксон. 33. Какой из указанных ниже нейронов является эфферентным? А. Передающий информацию о боли; Б. Передающий информацию о прикосновении к коже; В. Передающий информацию от скелетных мышц; Г. Передающий информацию от гладких мышц; Д. Передающий информацию железе. 34. Какая морфологическая область клетки чаще всего служит местом возникновения входного сигнала?
А. Дендриты; Б. Тело; В. Аксонный холмик; Г. Аксон; Д. Окончания аксона. 35. Что представляет собой рецепторный потенциал? А. Входной сигнал; Б. Проводящийся сигнал; В. Объединённый сигнал; Г. Постсинаптический потенциал; Д. Выходной сигнал. 36. Что представляет собой потенциал действия? А. Входной сигнал; Б. Объединённый сигнал; В. Выходной сигнал; Г. Местный потенциал; Д. Постсинаптический потенциал. 37. Какой сигнал возникает по правилу "всё или ничего"? А. Входной; Б. Объединённый; В. Выходной; Г. Постсинаптический; Д. Местный. 38. Какой из указанных ниже сигналов является градуальным? А. Потенциал действия; Б. Проводящийся; В. Постсинаптический; Г. Выходной; Д. Объединённый. 39. Какой сигнал возникает в триггерной зоне? А. Постсинаптический; Б. Рецепторный; В. Входной; Г. Объединённый; Д. Выходной. 40. Какой из указанных ниже сигналов имеет наибольшую амплитуду? А. Рецепторный; Б. Потенциал действия; В. Постсинаптический; Г. Местный; Д. Входной. 41. Чем непосредственно обеспечивается проведение сигнала по аксону? А. Действием раздражителя; Б. Выделением нейротрансмиттера; В. Наличием миелинового покрытия; Г. Отсутствием миелинового покрытия; Д. Локальным электрическим током. 42. Что из перечисленного ниже имеет отношение к формированию гематоэнцефалического барьера? А. Все клетки глии; Б. Астроциты; В. Олигодендроциты; Г. Шванновские клетки; Д. Микроглия. 43. Какие клетки осуществляют миелиновую изоляцию аксонов клеток центральной нервной системы? А. Астроциты; Б. Шванновские клетки; В. Олигодендроциты; Г. Клетки микроглии; Д. Все клетки глии. 44. Какую функцию выполняет миелин? А. Обёртывает тела нейронов, обеспечивая им механическую защиту; Б. Обёртывает кровеносные сосуды, создавая гематоэнцефалический барьер; В. Поглощает избыток ионов калия и тем самым выполняет роль буфера; Г. Является электроизолятором для аксонов; Д. Является проводником электрических сигналов. 45. При сдвиге значения мембранного потенциала до критического уровня должен возникнуть: А. Потенциал действия; Б. Рецепторный потенциал; В. Постсинаптический потенциал; Г. Градуальный потенциал; Д. Входной сигнал.
|
|||||||||
Последнее изменение этой страницы: 2016-09-20; просмотров: 955; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.118.237 (0.017 с.) |