Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Электронные потенциалы и электродвижущие силы

Поиск

При решении задач этого раздела см. табл. 6.

Если металлическую пластинку опустить в воду, то катионы металла на ее поверхности гидратируются полярными молекулами воды и переходят в жидкость. При этом электроны, в избытке остающиеся в металле, заряжают его поверхностный слой отрицательно. Возникает электростатическое притяжение между перешедшими в жидкость гидратированными катионами и поверхностью металла. В результате этого в системе устанавливается подвижное равновесие:

Ме + m Н2О ↔ Ме(Н2О) + n e,

в растворе на металле

где п – число электронов, принимающих участие в процессе. На границе металл – жидкость возникает двойной электрический слой, характеризующийся определенным скачком потенциала. Абсолютные значения электродных потенциалов измерить не удается. Электродные потенциалы зависят от ряда факторов (природы металла, концентрации, температуры и др.). Поэтому обычно определяют относительные электродные потенциалы в определенных условиях – так называемые стандартные электродные потенциалы (Е°).

Стандартным электродным потенциалом металла называют его электродный потенциал, возникающий при погружении металла в раствор собственного иона с концентрацией (или активностью), равной 1 моль/л, измеренный по сравнению со стандартным водородным электродом, потенциал которого при 25°С условно принимается равным нулю (Е° = 0; ∆G° = 0).

Располагая металлы в ряд по мере возрастания их стандартных электродных потенциалов (Е°), получаем так называемый ряд напряжений.

Положение того или иного металла в ряду напряжений характеризует его восстановительную способность, а также окислительные свойства его ионов в водных растворах при стандартных условиях. Чем меньше значение Е°, тем большими восстановительными способностями обладает данный металл в виде простого вещества и тем меньше окислительные способности проявляют его ионы, и наоборот. Электродные потенциалы измеряют в приборах, которые получили название гальванических элементов. Окислительно-восстановительная реакция, которая характеризует работу гальванического элемента, протекает в направлении, в котором ЭДС элемента имеет положительное значение. В этом случае ∆G°<0, так как ∆G° = – nF E°.

Пример 1. Стандартный электродный потенциал никеля больше, чем кобальта (табл. 6). Изменится ли это соотношение, если измерить потенциал никеля в растворе его ионов с концентрацией 0,001 моль/л, а потенциалы кобальта – в растворе с концентрацией 0,1 моль/л.

Решение. Электродный потенциал металла (E) зависит от концентрации его ионов в растворе. Эта зависимость выражается уравнением Нернста:

 

где Е ° – стандартный электродный потенциал;

п – число электронов, принимающих участие в процессе;

С – концентрация (при точных вычислениях – активность) гидратированных ионов металла в растворе, моль/л;

Е°для никеля и кобальта соответственно равны – 0,25 и – 0,277 В. Определим электродные потенциалы этих металлов при данных в условии концентрациях:

 

Таким образом, при изменившейся концентрации потенциал кобальта стал больше потенциала никеля.

 

Таблица 6

Стандартные электродные потенциалы (Е°) некоторых металлов (ряд напряжений)

 

Электрод Е°, В Электрод E°, В
Li+/Li –3,045 Cd2+/Cd –0,403
Rb+/Rb –2,925 Со2+/Со –0,277
К+ –2,924 Ni2+/Ni –0,25
Cs+/Cs –2,923 Sn2+/Sn –0,136
Ва2+/Ва –2,90 Рb2+/Рb –0,127
Са2+/Са –2,87 Fe3+/Fe –0,037
Na+/Na –2,714 +2 –0,000
Mg2+/Mg –2,37 Sb3+/Sb +0,20
Аl3+/Аl –1,70 Bi3+/Bi +0,215
Ti2+/Ti –1,603 Cu2+/Cu +0,34
Zr4+/Zr –1,58 Cu+/Cu +0,52
Mn2+/Mn –1,18 Hg22+/2Hg +0,79
V2+/V –1,18 Ag+/Ag +0,80
Сr2+/Сr –0,913 Hg2+/Hg +0,85
Zn2+/Zn –0,763 Pt2+/Pt +1,19
Сr3+/Сr –0,74 Au3+/Au +1,50
Fe2+/Fe –0,44 Au+/Au +1,70

Пример 2. Магниевую пластинку опустили в раствор его соли. При этом электродный потенциал магния оказался равен – 2,41 В. Вычислите концентрацию ионов магния (в моль/л).

Решение. Подобные задачи решаются также на основании уравнения Нернста (см. пример 1):

Пример 3. Составьте схему гальванического элемента, в котором электродами являются магниевая и цинковая пластинки, опущенные в растворы их ионов с активной концентрацией 1 моль/л. Какой металл является анодом, какой катодом? Напишите уравнения окислительно-восстановительной реакции, протекающей в этом гальваническом элементе, и вычислите его ЭДС.

Решение. Схема данного гальванического элемента:

(–)Mg | Mg2+ || Zn2+ | Zn(+)

Вертикальная линейка обозначает поверхность раздела между металлом и раствором, а две линейки – границу раздела двух жидких фаз – пористую перегородку (или соединительную трубку, заполненную раствором электролита). Магний имеет меньший потенциал (–2,37 В) и является анодом, на котором протекает окислительный процесс:

Mg0 – 2 e = Mg2+ (1)

Цинк, потенциал которого –0,763 В, – катод, т. е. электрод, на котором протекает восстановительный процесс:

Zn2+ + 2 e = Zn0 (2)

Уравнение окислительно-восстановительной реакции, характеризующее работу данного гальванического элемента, можно получить, сложив электронные уравнения анодного (1) и катодного (2) процессов:

Mg + Zn2+ = Mg2+ + Zn

Для определения ЭДС гальванического элемента из потенциала катода следует вычесть потенциал анода. Так как концентрация ионов в растворе равна 1 моль/л, то ЭДС элемента равна разности стандартных потенциалов двух его электродов:

ЭДС = = –0,763 – (–2,37) = 1,607 В.

 

Контрольные вопросы

141. В два сосуда с голубым раствором медного купороса поместили в первый цинковую пластинку, а во второй серебряную. В каком сосуде цвет раствора постепенно пропадет? Почему? Составьте электронные и молекулярные уравнения соответствующей реакции.

142. Увеличится, уменьшится или останется без изменения масса цинковой пластинки при взаимодействии ее с растворами: a) CuSO4; б) MgSO4; в) Pb(NO3)2? Почему? Составьте электронные и молекулярные уравнения соответствующих реакций.

143. При какой концентрации Zn2+ (в моль/л) потенциал цинкового электрода будет на 0,015 В меньше его стандартного электродного потенциала? Ответ: 0,30 моль/л.

144. Увеличится, уменьшится или останется без изменения масса кадмиевой пластинки при взаимодействии ее с растворами: a) AgNO3; б) ZnSO4; в) NiSO4? Почему? Составьте электронные и молекулярные уравнения соответствующих реакций.

145. Марганцевый электрод в растворе его соли имеет потенциал –1,23 В. Вычислите концентрацию ионов Мn2+ (в моль/л).

Ответ: 1,89·10-2 моль/л.

146. Потенциал серебряного электрода в растворе AgNO3 составил 95% от значения его стандартного электродного потенциала. Чему равна концентрация ионов Ag+ (в моль/л)?

Ответ: 0,20 моль/л.

147. Составьте схему, напишите электронные уравнения электродных процессов и вычислите ЭДС медно-кадмиевого гальванического элемента, в котором [Cd2+] = 0,8 моль/л, а [Сu2+] = 0,01 моль/л.

Ответ: 0,68 В.

148. Составьте схемы двух гальванических элементов, в одном из которых медь была бы катодом, в другом – анодом. Напишите для каждого из этих элементов электронные уравнения реакций, протекающих на катоде и аноде.

149. При какой концентрации ионов Сu2+ (моль/л) значение потенциала медного электрода становится равным стандартному потенциалу водородного электрода? Ответ: 1,89·10-12 моль/л.

150. Какой гальванический элемент называется концентрационным? Составьте схему, напишите электронные уравнения электродных процессов и вычислите ЭДС гальванического элемента, состоящего из серебряных электродов, опущенных: первый в 0,01 н, а второй – в 0,1 н растворы AgNO3. Ответ: 0,059 В.

151. При каком условии будет работать гальванический элемент, электроды которого сделаны из одного и того же металла? Составьте схему, напишите электронные уравнения электродных процессов и вычислите ЭДС гальванического элемента, в котором один никелевый электрод находится в 0,001 М растворе, а другой такой же электрод – в 0,01 М растворе сульфата никеля.

Ответ: 0,0295 В.

152. Составьте схему, напишите электронные уравнения электродных процессов и вычислите ЭДС гальванического элемента, состоящего из свинцовой и магниевой пластин, опущенных в растворы своих солей с концентрацией [Рb2+] = [Мо2+] = 0,01 моль/л. Изменится ли ЭДС этого элемента, если концентрацию каждого из ионов увеличить в одинаковое число раз? Ответ: 2,244 В.

153. Составьте схемы двух гальванических элементов, в одном из которых никель является катодом, а в другом – анодом. Напишите для каждого из этих элементов электронные уравнения реакций, протекающих на катоде и на аноде.

154. Железная и серебряная пластины соединены внешним проводником и погружены в раствор серной кислоты. Составьте схему данного гальванического элемента и напишите электронные уравнения процессов, происходящих на аноде и на катоде.

155. Составьте схему, напишите электронные уравнения электродных процессов и вычислите ЭДС гальванического элемента, состоящего из пластин кадмия и магния, опущенных в растворы своих солей с концентрацией [Mg2+] = [Cd2+] = 1 моль/л. Изменится ли значение ЭДС, если концентрацию каждого из ионов понизить до 0,01 моль/л?

Ответ: 1,967 В.

156. Составьте схему гальванического элемента, состояще­го из пластин цинка и железа, погруженных в растворы их солей. Напишите электронные уравнения процессов, протекающих на аноде и на катоде. Какой концентрации надо было бы взять ионы железа (моль/л), чтобы ЭДС элемента стала равной нулю, если [Zn2+] =0,001 моль/л?

Ответ: 7,3·10-15 моль/л.

157. Составьте схему гальванического элемента, в основе которого лежит реакция, протекающая по уравнению:

Ni + Pb(NO3)2 = Ni(NO3)2 + Pb

Напишите электронные уравнения анодного и катодного процессов. Вычислите ЭДС этого элемента, если [Ni2+]=0,01 моль/л, а [Рb2+] = = 0,0001 моль/л. Ответ: 0,064 В.

158. Какие химические процессы протекают на электродах при зарядке и разрядке свинцового аккумулятора?

159. Какие химические процессы протекают на электродах при зарядке и разрядке кадмий-никелевого аккумулятора?

160. Какие химические процессы протекают на электродах при зарядке и разрядке железо-никелевого аккумулятора?

 

Электролиз

Пример 1. Какая масса меди выделится на катоде при электролизе раствора CuSO4 в течение 1 часа при силе тока 4 А?

Решение. Согласно законам Фарадея:

m = ЭIt /96500, (1)

где m – масса вещества, окисленного или восстановленного на электроде;

Э – эквивалентная масса вещества;

I – сила тока, А;

t – продолжительность электролиза, с.

Эквивалентная масса меди в CuSO4 равна 63,54: 2 = 31,77 г/моль. Подставив в формулу (1) значения Э = 31,77, I = 4А, t = 60·60 = 3600 с, получим:

г.

Пример 2. Вычислите эквивалентную массу металла, зная, что при электролизе раствора хлорида этого металла затрачено 3880 Кл электричества и на катоде выделяется 11,742 г металла.

Решение. Из формулы (1):

Э = 11,742 · 96500/3880 = 29,35 г/моль,

где m = 11,742 г; It = Q = 3880 Кл.

Пример 3. Чему равна сила тока при электролизе раствора в течение 1 ч 40 мин 25 с, если на катоде выделилось 1,4 л водорода (н.у.)?

Решение. Из формулы (1):

I = m · 96500 · Эt.

Так как дан объем водорода, то отношение m / Э заменяем отношением V н2 ·Vэ2), где V н2 – объем водорода; л; 2) – эквивалентный объем водорода, л. Тогда I = V н2·96500/ 2).

Эквивалентный объем водорода при н.у. равен половине молярного объема 22,4/2 = 11,2 л. Подставив в приведенную формулу значения V н2 = 1,4 л, 2) = 11,2л, t = 6025 (1ч 40мин 25с), находим I = = 1,4·96500/11,2·6025 = 2 А

Пример 4. Какая масса гидроксида калия образовалась у катода при электролизе раствора K2SO4, если на аноде выделилось 11,2 л кислорода (н.у.)?

Решение. Эквивалентный объем кислорода (н.у.) 22,4/4 = 5,6 л. Следовательно, 11,2 л содержат две эквивалентные массы кислорода. Столько же эквивалентных масс КОН образовалось у катода, или 56,11·2 = 112,22 г (56,11 г/моль – мольная и эквивалентная масса КОН).

 

Контрольные вопросы

161. Электролиз раствора К24 проводили при силе тока 5А в течение 3 ч. Составьте электронные уравнения процессов, происходящих на электродах. Какая масса воды при этом разложилась и чему равен объем газов (н.у.), выделившихся на катоде, аноде?

Ответ: 5,03 г; 6,266 л; 3,133 л.

162. При электролизе соли некоторого металла в течение 1,5 ч при силе тока 1,8 А на катоде выделилось 1,75 г этого металла. Вычислите эквивалентную массу металла. Ответ: 17,37 г/моль.

163. При электролизе раствора CuSO4 на аноде выделилось 168 см3 (н.у.) газа. Составьте электронные уравнения процессов, происходящих на электродах, и вычислите, какая масса меди выделилась на катоде.

Ответ: 0,953 г.

164. Электролиз раствора Na2SO4 проводили в течение 5 ч при силе тока 7А. Составьте электронные уравнения процессов, происходящих на электродах. Какая масса воды при этом разложилась и чему равен объем газов (н.у.), выделившихся на катоде и аноде?

Ответ: 11,75 г; 14,62 л; 7,31 л.

165. Электролиз раствора нитрата серебра проводили при силе тока 2А в течение 4 ч. Составьте электронные уравнения процессов, происходящих на электродах. Какая масса серебра выделилась на катоде и каков объем газа (н.у.), выделившегося на аноде?

Ответ: 32,20 г; 1,67 л.

166. Электролиз раствора сульфата некоторого металла проводили при силе тока 6 А в течение 45 мин, в результате чего на катоде выделилось 5,49 г металла. Вычислите эквивалентную массу металла.

Ответ: 32,7 г/моль.

167. Насколько уменьшится масса серебряного анода, если электролиз раствора AgNO3 проводить при силе тока 2 А в течение 38 мин 20 с? Составьте электронные уравнения процессов, происходящих на графитовых электродах. Ответ: 4,47 г.

168. Электролиз раствора сульфата цинка проводили в течение 5 ч, в результате чего выделилось 6 л кислорода (н.у.). Составьте уравнения электродных процессов и вычислите силу тока.

Ответ: 5,74 А.

169. Электролиз раствора CuSO4 проводили с медным анодом в течение 4 ч при силе тока 50 А. При этом выделилось 224 г меди. Вычислите выход по току (отношение массы выделившегося вещества к теоретически возможной). Составьте электронные уравнения процессов, происходящих на электродах в случае медного и угольного анода.

Ответ: 94,48%.

170. Электролиз раствора NaI проводили при силе тока 6 А в течение 2,5 ч. Составьте электронные уравнения процессов, происходящих на угольных электродах и вычислите массу вещества, выделившегося на катоде и аноде. Ответ: 0,56 г; 71,0 г.

171. Составьте электронные уравнения процессов, происходящих на угольных электродах при электролизе раствора AgNO3. Если электролиз проводить с серебряным анодом, то его масса уменьшается на 5,4 г. Определите расход электричества при этом.

Ответ: 4830 Кл.

172. Электролиз раствора CuSO4 проводили в течение 15 мин при силе тока 2,5 А. Выделилось 0,72 г меди. Составьте электронные уравнения процессов, происходящих на электродах в случае медного и угольного анода. Вычислите выход по току (отношение массы выделившегося вещества к теоретически возможной).

Ответ: 97,3%.

173. Составьте электронные уравнения процессов, происходящих на графитовых электродах при электролизе расплавов и водных растворов NaCl и КОН. Сколько литров (н.у.) газа выделится на аноде при электролизе гидроксида калия, если электролиз проводить в течение 30 мин при силе тока 0,5 А? Ответ: 0,052 л.

174. Составьте электронные уравнения процессов, происходящих на графитовых электродах при электролизе раствора КВr. Какая масса вещества выделяется на катоде и аноде, если электролиз проводить в течение 1 ч 35 мин при силе тока 15 А?

Ответ: 0,886 г; 70,79 г.

175. Составьте электронные уравнения процессов, происходящих на угольных электродах при электролизе раствора СuСl2. Вычислите массу меди, выделившейся на катоде, если на аноде выделилось 560 мл газа (н.у.). Ответ: 1,588 г.

176. При электролизе соли трехвалентного металла при силе тока 1,5 А в течение 30 мин на катоде выделилось 1,071 г металла. Вычислите атомную массу металла.

Ответ: 114,82.

177. При электролизе растворов MgSO4 и ZnCl2, соединенных последовательно с источником тока, на одном из катодов выделилось 0,25 г водорода. Какая масса вещества выделится на другом катоде, на анодах? Ответ: 8,17 г; 2,0 г; 8,86 г.

178. Составьте электронные уравнения процессов, происходящих на угольных электродах при электролизе раствора Na2SO4. Вычислите массу вещества, выделяющегося на катоде, если на аноде выделяется 1,12 л газа (н.у.). Какая масса Н24 образуется при этом возле анода?

Ответ: 0,2 г; 9,8 г.

179. При электролизе раствора соли кадмия израсходовано 3434 Кл электричества. Выделилось 2 г кадмия. Чему равна эквивалентная масса кадмия? Ответ: 56,26 г/моль.

180. Составьте электронные уравнения процессов, происходящих на электродах при электролизе раствора КОН. Чему равна сила тока, если в течение 1 ч 15 мин 20 с на аноде выделилось 6,4 газа? Сколько литров газа (н.у.) выделилось при этом на катоде?

Ответ: 17,08 А; 8,96 л.

 

Коррозия металлов

При решении задач этого раздела см. табл. 6.

Коррозия – это самопроизвольно протекающий процесс разрушения металлов в результате химического или электрохимического взаимодействия их с окружающей средой.

При электрохимической коррозии на поверхности металла одновременно протекают два процесса: анодный – окисление металла

Ме0 п е = Ме п +

и катодный – восстановление ионов водорода

+ + 2е = Н2

или молекул кислорода, растворенного в воде,

О2 + 2Н2О +4е = 4ОН-.

Ионы или молекулы, которые восстанавливаются на катоде, называются деполяризаторами. При атмосферной коррозии – коррозии во влажном воздухе при комнатной температуре – деполяризатором является кислород.

Пример. Как происходит коррозия цинка, находящегося в контакте с кадмием в нейтральном и кислом растворах. Составьте электронные уравнения анодного и катодного процессов. Каков состав продуктов коррозии?

Решение. Цинк имеет более отрицательный потенциал (–0,763 В), чем кадмий (–0,403 В), поэтому он является анодом, а кадмий катодом.

анодный процесс: Zn0 – 2e = Zn2+

катодный процесс: в кислой среде 2Н+ + 2е = Н2

в нейтральной среде: 1/2О2 + Н2О + 2е = 2ОН-

Так как ионы Zn2+ с гидроксильной группой образует нерастворимый гидроксид, то продуктом коррозии будет Zn(OH)2.

 

Контрольные вопросы

181. Как происходит атмосферная коррозия луженого и оцинкованного железа при нарушении покрытия? Составьте электронные уравнения анодного и катодного процесса.

182. Медь не вытесняет водород из разбавленных кислот. Почему? Однако если к медной пластинке, опущенной в кислоту, прикоснуться цинковой, то на меди начинается бурное выделение водорода. Дайте этому объяснение, составив электронные уравнения анодного и катодного процессов. Напишите уравнение протекающей химической реакции.

183. Как происходит атмосферная коррозия луженого железа и луженой меди при нарушении покрытия? Составьте электронные уравнения анодного и катодного процессов.

184. Если пластинку из чистого цинка опустить в разбавленную кислоту, то начинающееся выделение водорода вскоре почти прекращается. Однако при прикосновении к цинку медной палочкой на последней начинается бурное выделение водорода. Дайте этому объяснение, составив электронные уравнения анодного и катодного процессов. Напишите уравнения протекающей химической реакции.

185. В чем сущность протекторной защиты металлов от коррозии? Приведите пример протекторной защиты железа в электролите, содержащем растворенный кислород. Составьте электронные уравнения анодного и катодного процессов.

186. Железное изделие покрыли никелем. Какое это покрытие – анодное или катодное? Почему? Составьте электронные уравнения анодного и катодного процессов коррозии этого изделия при нарушении покрытия во влажном воздухе и хлороводородной (соляной) кислоте. Какие продукты коррозии образуются в первом и втором случаях?

187. Составьте электронные уравнения анодного и катодного процессов с кислородной и водородной деполяризацией при коррозии пары магний–никель. Какие продукты коррозии образуются в первом и во втором случаях?

188. В раствор хлороводородной (соляной) кислоты поместили цинковую пластинку, частично покрытую медью. В каком случае процесс коррозии цинка происходит интенсивнее? Ответ мотивируйте, составив электронные уравнения соответствующих процессов.

189. Почему химически чистое железо более стойко против коррозии, чем техническое железо? Составьте электронные уравнения анодного и катодного процессов, происходящих при коррозии технического железа во влажном воздухе и в кислой среде.

190. Какое покрытие металла называется анодным и какое – катодным? Назовите несколько металлов, которые могут служить для анодного и катодного покрытия железа. Составьте электронные уравнения анодного и катодного процессов, происходящих при коррозии железа, покрытого медью, во влажном воздухе и кислой среде.

191. Железное изделие покрыли кадмием. Какое это покрытие – анодное или катодное? Почему? Составьте электронные уравнения анодного и катодного процессов коррозии этого изделия при нарушении покрытия во влажном воздухе и хлороводородной (соляной) кислоте. Какие продукты коррозии образуются в первом и во втором случаях?

192. Железное изделие покрыли свинцом. Какое это покрытие – анодное или катодное? Почему? Составьте электронные уравнения анодного и катодного процессов коррозии этого изделия при нарушении покрытия во влажном воздухе и хлороводородной (соляной) кислоте. Какие продукты коррозии образуются в первом и во втором случаях?

193. Две железные пластинки, частично покрытые одна оловом, другая медью, находятся во влажном воздухе. На какой из этих пластинок быстрее образуется ржавчина? Почему? Составьте электронные уравнения анодного и катодного процессов коррозии этих пластинок. Каков состав продуктов коррозии железа?

194. Какой металл целесообразней выбрать для протекторной защиты от коррозии свинцовой оболочки кабеля: цинк, магний или хром? Почему? Составьте электронные уравнения анодного и катодного процессов атмосферной коррозии. Каков состав продуктов коррозии?

195. Если опустить в разбавленную серную кислоту пластинку из чистого железа, то выделение на ней водорода идет медленно и со временем практически прекращается. Однако если цинковой палочкой прикоснуться к железной пластинке, то на последней начинается бурное выделение водорода. Почему? Какой металл при этом растворяется? Составьте электронные уравнения анодного и катодного процессов.

196. Цинковую и железную пластинку опустили в раствор сульфата меди. Составьте электронные и ионно-молекулярные уравнения реакций, происходящих на каждой из этих пластинок. Какие процессы будут проходить на пластинках, если наружные концы их соединить проводником?

197. Как влияет рН среды на скорость коррозии железа и цинка? Почему? Составьте электронные уравнения анодного и катодного процессов атмосферной коррозии этих металлов.

198. В раствор электролита, содержащего растворенный кислород, опустили цинковую пластинку и цинковую пластинку, частично покрытую медью. В каком случае процесс коррозии цинка проходит интенсивнее? Составьте электронные уравнения анодного и катодного процессов.

199. Составьте электронные уравнения анодного и катодного процессов с кислородной и водородной деполяризацией при коррозии пары алюминий – железо. Какие продукты образуются в первом и во втором случаях?

200. Как протекает атмосферная коррозия железа, покрытого слоем никеля, если покрытие нарушено? Составьте электронные уравнения анодного и катодного процессов. Каков состав продуктов коррозии?

 




Поделиться:


Последнее изменение этой страницы: 2016-04-23; просмотров: 224; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.250.247 (0.009 с.)