Структурная организация спинного мозга. Понятие о сегментарности на уровне спинного мозга. Функция задних и передних корешков спинного мозга. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Структурная организация спинного мозга. Понятие о сегментарности на уровне спинного мозга. Функция задних и передних корешков спинного мозга.



Спинной мозг располагается в спинномозговом канале. Основная особенность строения спинного мозга — это его сегментарность. Спинной мозг человека имеет 31 — 33 сегмента и по функциональному принципу делится на 8 шейных (С1 —С8), 12 грудных (Т1—Т12), 5 поясничных (L1 —L5), 5 крестцовых (S1 —S5) и 1 —3 копчиковых (СО1 — СО3). Один сегмент иннервирует 3 метамера тела — свой и два других прилежащих к нему соседних метамера. Поэтому поражение или перерезка корешков одного сегмента спинного мозга не приводит к полной потере чувствительности и движения в соответствующем метамере тела, а лишь к ос-

ослаблению этих функций. Каждый сегмент имеет афферентные входы в виде задних корешков, клеточную массу нервных клеток (серое вещество) и эфферентные выходы в составе передних корешков. В задних ко-

корешках проходят чувствительные центростремительные нервные волокна от рецепторов кожи (болевые, температурные, тактильные и давления) — это кожная рецептирующая система; от рецепторов мышц, сухожилий, суставов — это проприоцептивная система, наконец, от рецепторов внутренних органов — это висцероцептивная система. Передние корешки являются двигательными цетробежными (закон Белла — Мажанди). Если в опыте на лягушке в области пояснично-крестцовых сегментов справа перерезать все задние корешки, а слева — все передние, то правая конечность теряет чувствительность, но способна к движению, а левая, наоборот, сохраняет чувствительность, но не сможет совершать движения. Серое вещество спинного мозга, состоящее из нейронов, образует два передних и два задних рога и на поперечном разрезе имеет вид буквы Н. Задние рога выполняют сенсорные функции, передние — двигательные. В грудных и верхних поясничных сегментах помимо задних и передних рогов есть еще и боковые, в которых располагаются нейроны симпатического, а в крестцовых — парасимпатического отделов вегетативной нервной системы.

При поражении боковых рогов спинного мозга возникает целый ряд вегетативных расстройств: нарушаются кожные сосудистые рефлексы, усиливается потоотделение, наблюдаются трофические изменения кожи и ногтей. Нейроны спшшого мозга. Существует функциональное деление нейронов на 4 группы.

В первую группу входят мотонейроны, или двигательные нейроны, расположенные в передних рогах, а их аксоны образуют передние корешки. Вторую группу составляют интернейроны — промежуточные нейроны, расположенные в задних рогах и получающие информацию от чувствительных ганглиев. Они реагируют на болевые, температурные, тактильные и проприоцептивные раздражители. Интернейроны отвечают за висцеромоторные рефлексы. Кроме того, они обеспечивают восходящие и нисходящие тормозные и возбуждающие влияния на клетки выше- и нижележащих структур спинного мозга. Интернейроны участвуют

в реципрокном торможении. Третья группа нейронов — это симпатические и парасимпатические нейроны, расположенные в боковых рогах. Аксоны этих клеток выходят из спинного мозга в составе передних корешков. Разряды симпатических нейронов синхронизируются с колебаниями артериального давления. К четвертой группе относят ассоциативные нейроны, обеспе- обеспечивающие внутри- и межсегментарные связи. В средней части спинного мозга находится промежуточное ядро, содержащее нейроны, аксоны которых образуют сеть — студенистое вещество (желатинозную субстанцию Роланда), или ретикулярную формацию спинного мозга. Мотонейроны спинного мозга делят на альфа и гамма-нейроны. Альфа-мотонейроны иннервируют экстрафузальные мышечные волокна, обеспечивая мышечное сокращение. На дендритах

этих клеток располагается около 20 тысяч синапсов. Альфа-мотонейроны обладают низкой частотой импульсации (10 —20 в сек). Гамма-мотонейроны иннервируют интрафузальные мышечные волокна мышечного веретена. Они обладают высокой частотой импульсации (до 200 в сек). Главная функция гамма-мотонейронов состоит в предотвращении во время сокращения экстрафузальных волокон расслабления мышечных веретен. Возбуждение гамма-мотонейронов способствует развитию начавшегося движения и используется для выполнения особенно тонких и мелких движений. Это сервомеханизм для оптимизации движений. Собственные функции спинного мозга. Эти функции осуществляются за счет сегментарных рефлекторных дуг (моно- и полисинаптических). Шейные сегменты спинного мозга С1 — С5 иннервируют диафрагму, Т1 —Т12 — наружные и внутренние межреберные мышцы. С5 — С8 и Т1 — Т2 — центры движения верхних конечностей, L2 — L4 и S1 — S2 — центры движения задних или нижних конечностей. Альфа- и гамма-мотонейроны поддерживают тонус тела и обеспечивают рефлексы сгибания и разгибания — миостатические рефлексы: коленный, ахиллов, подошвенный, сгибательный и разгибательный рефлексы предплечья, брюшной рефлекс. Рефлексы с рецепторов кожи выражаются в усилении сокращения мышц-сгибателей. Висцеромоторные рефлексы возникают при стимуляции афферентных нервов внутренних органов и проявляются в виде двигательных реакций мышц грудной клетки, брюшной стенки и разгибателя спины.

Вегетативные рефлексы — это ответная реакция внутренних органов на раздражение висцеральных и соматических рецепторов. Вегетативные центры спинного мозга, расположенные в боковых рогах, участвуют в регуляции кровяного давления, деятельности сердца, секреции и моторики пищеварительного тракта и

функции мочеполовой системы. В пояснично-крестцовом отделе спинного мозга находится центр дефекации, из которого по парасимпатическим волокнам в составе тазового нерва поступают импульсы, усиливающие моторику прямой кишки и обеспечивающие непроизвольный акт дефекации. Произвольный акт дефекации совершается за счет нисходящих влияний головного мозга на спинальный центр. Во II — IV крестцовых сегментах спинного мозга находится рефлекторный центр мочеиспускания, обеспечивающий непроизвольное отделение мочи. Головной мозг осуществляет произвольное мочеиспускание. Проводниковая функция спинного мозга. В состав белого вещества спинного мозга входят миелиновые нервные волокна, собранные в пучки и образующие проводящие пути спинного мозга. Короткие ассоциативные волокна обеспечивают межсегментарные связи или соединяют нейроны противоположной стороны спинного мозга. Длинные проекционные волокна делят на восходящие, идущие к различным отделам головного мозга, и нисходящие — от головного мозга к спинному. Восходящие проводящие пути проходят в белом веществе задних канатиков, расположенных между задними рогами серого вещества. К ним относится тонкий пучок Голля (fasciculus gracilis), отвечает за проведение проприоцептивной, тактильной и висцеральной чувствительности от нижней части туловища и нижних конечностей. Клиновидный пучок Бурдаха (fasciculus cuneatus) проводит проприоцептивную, тактильную и висцеральную чувствительность от верхней половины туловища и верхних конечностей. Оба пучка перекрещиваются на уровне продолговатого мозга, где находятся соответствующие ядра (п.gracilis и п.cuneatus) и синаптическое переключение на второй нейрон. После перекреста аксоны нейронов в составе медиального лемнискового пути направляются к специфическим ядрам вентробазального комплекса таламуса, где они вновь переключаются на третий нейрон. Аксоны нейронов специфических таламических ядер заканчиваются в IV слое соматосенсорной коры больших полушарий. Оба пучка передают информацию о локализации, форме и контурах периферического раздражителя с большой точностью от небольшого количества рецепторов в высшие отделы головного мозга. При поражении тонкого и клиновидного пучков наблюдаются потеря тактильной чувствительности и нарушение координации движений. В боковых канатиках проходит восходящий дорсальный спиномозжечковый тракт (пучок Флексига), который, не перекрещиваясь, восходит до коры мозжечка и передает в мозжечок информацию от рецепторов мышц, связок и кожи конечностей, а также восходящий вентральный спиномозжечковый тракт (пучок Говерса). Он вступает в мозжечок после перекреста. Передает в мозжечок информацию от сухожилий, кожи и висцерорецепторов. Участвует в поддержании тонуса мышц при движении и сохранении позы тела.

К восходящим путям относится спиноталамический тракт. Информация от рецепторов кожи поступает в спинальный ганглий, затем через задние корешки — к заднему рогу спинного мозга (первое переключение). Аксоны чувствительных нейронов переходят на противоположную сторону в каждом сегменте спинного мозга и поднимаются по боковому канатику к таламусу, а затем в сенсорную кору. Боковой спиноталамический тракт проводит болевую и температурную чувствительность. Часть волокон спиноталамического тракта идет к таламусу по переднему канатику, который делает перекрест на противоположную сторону через несколько вышележащих сегментов. Передний спиноталамический тракт передает в зрительный бугор тактильную чувствительность. Нисходящие проводящие пути спинного мозга включают несколько трактов, заканчивающихся на мотонейронах передних рогов. К ним относится пирамидный, или кортикоспинальный, тракт, который делится на латеральный и передний пучки. Латеральный пучок начинается от нейронов коры больших полушарий и делает перекрест на уровне продолговатого мозга, спускаясь на противоположную сторону спинного мозга. Передний пучок делает перекрест на уровне сегмента, в котором он заканчивается. Пирамидный тракт обеспечивает связь нейронов двигательной зоны коры больших полушарий с мотонейронами передних рогов спинного мозга и отвечает за произвольные движения. Руброспинальный (красноядерно-спиномозжечковый) тракт (Монакова) относится к экстрапирамидной системе, делает перекрест после выхода из красного ядра, связывает нейроны красного ядра среднего мозга с мозжечком, продолговатым мозгом и спинным, заканчивается на интернейронах соответствующего сегмента спинного мозга, управляет тонусом мышц и непроизвольной координацией движений. Вестибулоспинальный (преддверно-спинномозговой) тракт относится к экстрапирамидной системе, отвечает за связь между ядром Дейтерса варолиева моста, мозжечком и мотонейронами передних рогов спинного мозга. Регулирует тонус мускулатуры, координацию движений, равновесие и ориентацию в пространстве. Ретикулоспинальный (ретикулярно-спинномозговой) тракт также относится к экстрапирамидной системе. Начинается на ретикулярных нейронах различных уровней моста и продолговатого мозга и заканчивается на мотонейронах спинного мозга. Оказывает тормозные и облегчающие влияния на рефлексы спинного мозга. Отвечает за осуществление фазных двигательных реакций и поддержание позы тела. При одностороннем поражении спинного мозга (при травме, опухоли) развивается сложный симптомокомплекс (синдром Броун-Секара). На стороне поражения (ниже места поражения) нарушаются двигательные функции вследствие повреждения пирамидного тракта. На противоположной стороне движения сохраняются, но отсутствует болевая и температурная чувствительность (повреждение перекрещенного спиноталамического тракта), и с обеих сторон частично нарушена тактильная чувствительность. Полное пересечение спинного мозга приводит к возникновению спинального шока (шок-удар). В результате ниже перерезки исчезают все виды рефлекторной деятельности: нарушается двигательная активность, все виды чувствительности, вегетативные функции (мочеиспускание и отделение кала становятся непроизвольными). Причина спинального шока — это потеря связей с вышележащими отделами центральной нервной системы и особенно с корой больших полушарий. Это доказано повторной перерезкой спинного мозга ниже места перерезки. При этом спинальный шок вновь не возникает. Арефлексия у разных животных длится определенное время: у лягушки — несколько минут, у хищных млекопитающих — часы, у обезьян — недели или месяцы, у человека — несколько ме- месяцев. Восстанавливаются лишь простые спинальные рефлексы: сгибание-разгибание, рефлекторное опорожнение мочевого пузыря и сосудистые рефлексы. Не восстанавливаются все виды чувствительности и произвольные двигательные акты.

16. Средний мозг. Рефлекторная деятельность среднего мозга. Участие его в зрительных и слуховых рефлексах.
Средний мозг расположен кпереди от мозжечка и моста в виде толстостенной массы, пронизанной узким центральным каналом (водо­провод мозга), соединяющим полость III желудочка мозга (в промежуточном мозгу) с IV желудочком (в продолговатом мозгу). В процессе эмбрионального развития средний мозг формируется из среднего мозгового пузыря, боковые выпячивания которого перемещаются латерально и образуют сетчатку глаза, которая структурно и функционально представляет собой вынесенный на пери­ферию нервный центр среднего мозга. На поперечном срезе дорсальная поверхность среднего мозга занята пластинкой крыши, часто называемой пластинкой четверохолмия, или четверохолмием, состоящей из двух пар возвышений: верхних и нижних. Верхние холмики (двухолмие) играют роль зрительного подкоркового центра и служат местом переключения зрительных путей, идущих к латеральным ко­ленчатым телам промежуточного мозга. У низших позвоночных (рыб и амфи­бий) ростральные (верхние) холмики достигают очень больших размеров и выполняют роль высшего зрительного центра, так как здесь заканчивается большая часть волокон зрительного тракта. У птиц и рептилий в среднем мозгу от зрительных путей ответвляются немногочисленные коллатерали, идущие к латеральным коленчатым телам промежуточного мозга. Наконец, у млекопитающих большинство путей зри­тельного тракта заканчивается на нейронах коленчатых тел, и только часть из них заходит в ростральные холмики. Нижние (каудальные) холмики (двухолмие) в процессе филогенетического развития формируются у наземных животных (рептилий и птиц) в связи с развитием органа слуха и служат местом переключения слуховых путей, а также афферентных волокон от вестибулярных рецепторов. Каудальные (ниж­ние) холмики выполняют функцию подкоркового слухового центра. Пластинка крыши и лежащие вентральнее клеточные слои вплоть до водо­провода среднего мозга формируют так называемую крышу среднего мозга, или тектальную область, которая обладает довольно сложной цитоархитектоникой. Большие нейроны веретенообразной формы расположены здесь слоями, общее число которых достигает 14. Ветвящиеся дендриты и мощные аксоны этих клеток ориентированы в вертикальной плоскости по отношению к поверхности мозга. Аксоны тектальных нейронов идут к ретикулярной формации, к двига­тельным ядрам стволовой части мозга и в спинной мозг, формируя покрышечно-спинномозговой путь. Таким образом, сама структура крыши среднего мозга создает предпосылку для его участия в анализе сенсорной информации и в регуляции движений. Данные, полученные при регистрации импульсной активности тектальных нейронов, позволяют дифференцировать их на группы по способности реагиро­вать на различные параметры сенсорных раздражений (смена света и темноты, перемещение светового источника). Эфферентные воздействия тектальных ней­ронов реализуются в форме ряда жизненно важных безусловных рефлексов. К числу таких рефлексов можно отнести сторожевой рефлекс при внезапной подаче светового или звукового раздражителей — рефлекс, вызывающий уси­ление тонуса мышц сгибателей. В пластинке крыши осуществляются замыка­ние ориентировочных, зрительных и слуховых рефлексов (поворот головы к источнику раздражения, рефлекторная установка на звук внешнего уха), обо­ронительных рефлексов. Все эти автоматические реакции относятся к катего­рии генетически запрограммированных реакций организма, важных для сохра­нения вида. В координации движений участвуют и другие структуры среднего мозга. Вентральнее водопровода среднего мозга в виде двух толстых валиков распо­ложены ножки мозга, которые, расходясь кпереди, вступают в полушария конечного мозга. На поперечном срезе ножки мозга разделяются пигментиро­ванной прослойкой на две части: покрышку среднего мозга (тегментум) и основание ножек мозга. Пигментированная прослойка состоит из нейронов, богатых пигментом ме­ланином, и носит название черного вещества (Земмерринга). Это филогенети­чески древнее образование относится к экстрапирамидной системе регуляции двигательной активности и функционально связано с лежащими в основании полушарий переднего мозга базальными ядрами (ганглиями) — полосатым телом и бледным шаром. Нейроны черного веще­ства имеют дофаминергическую природу, т. е. способны синтезировать медиа­тор катехоламинового ряда — дофамин. Аксоны этих нейронов подходят к полосатому телу, также содержащему в значительном количестве дофамин. Дальнейшие исследования показали, что повреждение черного вещества, вызы­вающее дегенерацию дофаминергических путей к полосатому телу, связано с тяжелым неврологическим заболеванием — дрожательным параличом (болез­нью Паркинсона). В покрышке среднего мозга залегают различные функционально значимые ядра. Наиболее крупным из них является парное красное ядро (Штиллинга), представляющее собой удлиненное образование, которое расположено между черным веществом и окружающим водопровод среднего мозга центральным серым веществом. Красные ядра являются важным промежуточным центром проводящих путей стволовой части мозга. В них заканчиваются волокна экст­рапирамидной системы, идущие от базальных ядер конечного мозга, а также волокна, идущие из мозжечка. Аксоны крупноклеточной части красного ядра дают начало нисходящему красноядерно-спинномозговому пути (Монакова), заканчивающемуся на мотонейронах передних рогов спинного мозга. Этот тракт является конечным зве­ном древней экстрапирамидной системы, объединяющей влияния переднего мозга, мозжечка, вестибулярных ядер и координирующей работу двигательно­го аппарата. Часть аксонов клеток, локализованных в красном ядре, заканчивается на нейронах ретикулярной формации среднего мозга. Она расположена несколько дорсальнее красного ядра и представляет собой продолжение ретикулярной формации заднего мозга. Наряду с активирующей функцией, механизм кото­рой разбирался в предыдущем разделе, ретикулярная формация среднего мозга играет важную роль в регуляции работы глазодвигательного аппарата. В рефлекторной регуляции глазных движений принимают также участие двигательные ядра глазодвигательного (III пара) и блокового (IV пара) черепных нервов, расположенные в покрышке под дном водопровода среднего мозга. Кпере­ди от ядра глазодвигательного нерва лежит добавочное ядро глазодвигательного нерва (ядро Даркшевича), от которого начинается медиальный продольный пучок среднего мозга, связывающий между собой ядра глазодвигательного, блокового и находящегося в заднем мозгу отводящего нервов, образуя из них единую функциональную систему, регулирующую сочетанные движения глаз. Под ядром глазодвигательного нерва лежит непарное вегетативное парасим­патическое ядро глазодвигательного нерва (Якубовича, или Вестфаля-Эдин-гера), нейроны которого посылают отростки в периферический ресничный ганглий. Постганглионарные нейроны ресничного ганглия иннервируют мышцы радужной оболочки, регулирующей диаметр зрачка, и мышцы ресничного тела, изменяющие кривизну хрусталика. Рефлекторные воздействия нейронов ресничного ганглия находятся в соответствии с деятель­ностью соматических глазодвигательных ядер. Как правило, кривизна хруста­лика изменяется сопряженно с изменением угла сведения глазных осей. Средний мозг является не только местом замыкания многих жизненно важных рефлексов, но и выполняет существенную проводниковую функцию. Отделенное от покрышки черным веществом основание ножек мозга состоит исключительно из нисходящих путей, соединяющих кору больших полуша­рий с мостом и спинным мозгом. В их числе находятся оба пирамидных тракта, по которым распространяются прямые влияния коры на мотонейроны спинного мозга. Среднему мозгу принадлежит важная роль в регуляции глазных движений. Двигательный аппарат глаза состоит из шести наружных глазных мышц, кото­рые иннервируются тремя черепными нервами. Нейроны ядра глазодвигательного нерва иннервируют медиальную, нижнюю и верхнюю пря­мые мышцы глаза, нижнюю косую, а также мышцу, поднимающую верхнее веко. Блоковый нерв иннервирует верхнюю косую мышцу, а отводящий нерв — латеральную прямую мышцу глаза. С помощью этого двигательного аппарата глаза могут производить горизонтальные, вертикальные и вращательные дви­жения. При свободном рассматривании предметов, при чтении наши глаза совершают быстрые микросаккады (микроскачки), из одной точки фиксации в другую. Микросаккады чередуются периодами фиксации глаза, продолжающи­мися от 0,15 до 2 с. Горизонтальные движения глаза зависят от содружественной работы лате­ральной и медиальной прямых мышц глаза. Нейрофизиологическими исследо­ваниями установлено, что степень возбуждения мотонейронов, локализован­ных в ядрах отводящего и глазодвигательного нервов, идущих к этим мышцам, контролируется центрами ретикулярной формации моста. В этих центрах обна­ружены нейроны, которые характеризуются повышением частоты своей им­пульсной активности перед началом каждой горизонтальной микросаккады. Другая группа нейронов, напротив, прерывает свои импульсные разряды до и во время саккад. При вертикаль­ных движениях глаза также наблюдается антагонистическое взаимодействие между двумя другими группами глазных мышц. При движении глаза по вертикали вверх сокращаются нижняя косая и верхняя прямая мышцы (гла­зодвигательный нерв) и одновременно расслабляются верхняя косая (блоко­вый нерв) и нижняя прямая (глазодвигательный нерв) мышцы глаза. В данном случае возбудимость соответствующих моторных центров регулируется группой нейронов ретикулярной формации среднего мозга, локализованной под ростральными холмиками пластинки крыши. В этой области обнаружены ретикулярные нейроны, увеличивающие частоту своих импульсных разрядов перед началом вертикальных микросаккад. Поражение ретикуляр­ной формации среднего мозга при патологических процессах парализует вер­тикальные движения глаз. Таким образом, ретикулярная формация среднего мозга играет важную роль в координации сокращений глазных мышц. Она получает афферентные входы от ростральных холмиков пластинки крыши, мозжечка, вестибулярных ядер, зрительных областей коры полушарий головного мозга. Поступающие по этим входам сигналы интегрируются центрами ретикулярной формации и слу­жат для рефлекторного изменения работы глазодвигательного аппарата при внезапном появлении движущихся объектов, при изменении положения голо­вы, при произвольных движениях глаз и т. д. По отношению к моторным центрам в ядрах черепных нервов ретикулярная формация выступает как более высокий уровень регуляции глазных движений, осуществляемой за счет воз­буждающих и тормозных влияний.

 

17. Мозжечок. Участие мозжечка в регуляции двигательной и вегетативной сферы.
Мозжечок как надсегментарная структура появляется на ранних этапах филогенеза позвоночных, причем степень его развития у различных животных определяется экологией и сложностью локомоции. У млекопитающих мозжечок — крупный вырост моста, состоящий из двух полушарий и непарного отдела — червя. Со стволовой частью мозга мозжечок соединяется тремя парами ножек. Самые толстые средние ножки как бы охватывают продолговатый мозг и, расширяясь, переходят в мост. Ростральные ножки начинаются в зубчатых ядрах мозжечка (см. ниже) и направляются к пластинке крыши среднего мозга. Третья пара ножек (каудальная) спускается вниз, сливаясь с продолговатым мозгом. Афферентные волок­на, приходящие в мозжечок, преимущественно входят в состав средних и каудальных ножек, тогда как эфферентные собраны главным образом в рост­ральных ножках мозжечка. Вся поверхность мозжечка разделяется глубокими бороздами на доли. В свою очередь, каждая доля параллельными бороздками разделяется на извилины; группы извилин формируют дольки мозжечка. Каждую дольку обозначают как классическим названием (язычок, центральная, вершина и т. д.), так и латин­ской нумерацией (1-Х) в соответствии с принятой номенклатурой. Согласно О. Ларселу, всю поверхность мозжечка можно разделить на отде­лы в зависимости от характера поступающих афферентных путей и филогене­тического возраста структурных образований. Наиболее изолированная клочково-узелковая доля (X) составляет древнюю часть мозжечка (палеоцеребеллум). Здесь заканчиваются проекции от вес­тибулярных ядер продолговатого мозга. Следующий отдел — старая часть мозжечка, или археоцеребеллум, — включает в себя участки червя, соответ­ствующие ростральной доле, а также пирамиду, язычок и околоклочок. В палеоцеребеллуме находятся проекции восходящих спинно-мозжечковых путей, не­сущих информацию от мышечных рецепторов. И, наконец, третий отдел — новая часть мозжечка, или неоцеребеллум, — состоит из появляющихся у млекопитающих полушарий и участков червя, которые расположены каудальнее первой щели. К неоцеребеллуму по путям, переключающимся в ядрах моста, поступает афферентная импульсация от обширных областей коры боль­ших полушарий (лобных, теменных, височных и затылочных долей). Полушария и червь мозжечка состоят из лежащего на периферии серого вещества — коры — и расположенного глубже белого вещества — мозгового тела, в котором заложены скопления нервных клеток, образующие ядра мозжечка. Кора мозжечка представлена тремя слоями, каждый из которых имеет опреде­ленный набор клеточных элементов. Самый поверхностный слоймолекуляр­ный — состоит из параллельных волокон и разветвлений дендритов и аксонов нейронов нижележащих слоев. В нижней части молекулярного слоя расположе­ны тела корзинчатых нейронов, аксоны которых оплетают тела и начальные сегменты аксонов клеток Пуркинье (грушевидных нейронов). Здесь же в молекулярном слое имеется некоторое количество звездчатых клеток. Под ганглиозным слоем лежит зернистый слой, который содержит большое число тел клеток-зерен, или гранулярных клеток. По некоторым подсчетам их число может достигать 10 млрд. Аксоны клеток-зерен поднимаются вертикаль­но вверх в молекулярный слой и там Т-образно ветвятся. Ветви идут парал­лельно поверхности коры и образуют синапсы на дендритах других клеток. Здесь же в гранулярном слое лежат клетки Гольджи, аксоны которых подхо­дят к клеткам-зернам. Афферентный вход к нейронному аппарату коры осуществляется по трем системам нервных волокон. Это, во-первых, лазающие, или ползучие, волокна, идущие из нижних олив продолговатого мозга. Нижняя олива получает афференты от нескольких восходящих путей спинного мозга и из центров головного мозга. Лазающие волокна широко ветвятся и подобно лианам оплетают дендри­ты клеток Пуркинье, формируя на них синапсы. Вторая система афферентных волокон — это моховидные, или мшистые, волокна, идущие от ядер моста и оканчивающиеся на клетках-зернах. Мшистые волокна многократно ветвятся и образуют синапсы на множестве клеток коры мозжечка. И, наконец, третья система афферентных волокон — это также широко ветвящиеся адренергические волокна, поступающие в кору мозжечка из голубоватого пятна в среднем мозгу. Оно представляет собой скопление из нескольких нейронов, аксоны которых способны диффузно выбрасывать норадреналин в межклеточное про­странство. Вероятно, эти нейроны выполняют нейромодуляторную функцию и могут изменять возбудимость нейронов, локализованных в коре мозжечка. В белом веществе мозжечка сконцентрированы три пары ядер. В белом веществе червя близко к срединной плоскости находится ядро шатра (Кёлликера). Нейроны этого ядра посылают свои отростки к ЛПЯ и к ретикулярной формации продолговатого мозга и моста, где берет свое начало ретикулярно-спинномозговой путь. Латеральнее ядра шатра находятся вставочные, или промежуточные, ядра, которые у человека разделяется на латеральное (пробковидное) и медиальное (шаровидное) вставочные ядра мозжечка. От вставочного ядра аксоны идут в средний мозг к красному ядру. Менее развитый афферентный путь от вставочного ядра идет в промежуточный мозг к вентролатеральному ядру таламуса — и оттуда к двигательной коре. Латеральнее всех ядер лежит наиболее крупное латеральное (зубчатое) ядро мозжечка, от которого мощные пучки волокон направляются к вентролатеральному ядру таламуса, и далее аксоны нейронов второго порядка проециру­ются в моторные зоны коры. Мозжечок как надсегментарный орган, входящий в систему регуляции движений, выполняет следующие важные функции: 1.регуляция позы и мышечного тонуса; 2.сенсомоторная координация позных и целенаправленных движений; 3.координация быстрых целенаправленных движений, осуществляемых по команде из больших полушарий. Эти функции мозжечка наиболее удобно разбирать в соответствии с топической классификаций его отделов, основанной на характере эфферентных связей. Медиальная червячная зона мозжечка в наибольшей степени связана с реализацией первой функции, т. е. с управлением тонусом, позой и равновеси­ем тела. В эту зону коры мозжечка, а также в клочково-узелковую долю палеоцеребеллума поступает афферентная информация, сигнализирующая о позе и состоянии локомоторного аппарата. После обработки этой информации из коры мозжечка через ядро шатра корригирующие команды направляются к ЛПЯ, к ретикулярной формации ствола и оттуда к спинальным центрам по ретикулярно- и преддверно-спинномозговым путям. Таким образом, вся система работает по принципу обратной связи и обеспе­чивает срочную регуляцию антигравитационного тонуса. Промежуточная зона коры мозжечка, связанная со вставочным ядром (или шаровидным и пробковидным), так же как и предыдущая зона, имеет афферентные входы от спинномозговых путей. Однако, кроме того, через ядра моста промежуточная зона коры мозжечка получает информацию от двига­тельной области коры больших полушарий. Эта информация поступает через коллатерали корково-спинномозгового пути и сигнализирует о готовящемся целенаправленном движении. Сопоставление приходящей по этим двум пу­тям информации позволяет промежуточной зоне мозжечка участвовать в ко­ординации целенаправленных движений с рефлексами поддержания позы, в выборе позы оптимальной для выполнения движения. Нисходящие команды от промежуточной зоны коры мозжечка через вставочное ядро идут к красно­му ядру и далее по красноядерно-спинномозговому пути к моторным центрам спинного мозга. Как уже отмечалось, латеральная, филогенетически наиболее молодая, кора полушарий мозжечка дает эфферентные проекции к зубчатому ядру. Эта лате­ральная зона через корково-мосто-мозжечковый путь получает афферентный вход от различных ассоциативных зон коры больших полушарий. По этим афферентным путям в кору полушарий мозжечка поступает информация о замысле движения. В полушариях и зубчатом ядре мозжечка эта информация преобразуется в программу движения, которая по мозжечково-таламо-корковому пути поступает в двигательные зоны коры больших полушарий. В дальней­шем двигательный акт реализуется за счет нисходящих команд, идущих от двигательной коры в спинной мозг по корково-спинномозговому пути. Кроме того, от зубчатого ядра мозжечка через красное ядро могут распространяться прямые нисходящие воздействия к спинальным центрам. Эта сложная система регуляции движений с наличием обратных связей между мозжечком и корой больших полушарий позволяет полушариям моз­жечка участвовать в организации быстрых целенаправленных движений, про­текающих без учета информации, идущей от восходящих сенсорных путей спинного мозга. Такие движения могут встретиться в спортивной практике, при игре на музыкальных инструментах и при некоторых других видах дея­тельности. Экспериментальные исследования функций мозжечка показали, что этот отдел головного мозга участвует не только в регуляции движений, но и включен в систему контроля висцеральных функций. Л. А. Орбели было ус­тановлено, что раздражение мозжечка вызывает целый ряд вегетативных рефлексов, таких, например, как расширение зрачков, повышение артериаль­ного давления и т. д. Удалению мозжечка сопутствуют нарушения сердечно­сосудистой деятельности, дыхания, моторной и секреторной функций желу­дочно-кишечного тракта. Электрофизиологическими методами в мозжечке обнаружены висцеральные проекции внутренних органов. Так, например, при раздражении интероцепторов в коре мозжечка регистрируются вызван­ные потенциалы.

18. Строение гипофиза. Связь с ядрами гипоталамуса. Гипо- и гиперфункция гипофиза.
Одной из важнейших функций гипоталамуса является регуляция деятель­ности гипофиза. Гипофиз — главная железа внутренней секре­ции — состоит из передней, задней и промежуточной долей. В процессе эмбрио­генеза передняя доля, или аденогипофиз, развивается из выпячивания глотки, а задняя, или нейрогипофиз, формируется из промежуточного мозга. Как перед­няя, так и задняя доли гипофиза находятся под контролем гипоталамуса, однако механизмы их регуляции различны. Нейрогипофиз является органом, депонирующим два гормона: антидиуре­тический (АДГ, вазопрессин) и окситоцин. Как уже упоминалось, местом синте­за этих гормонов являются супраоптическое и паравентрикулярное ядра гипота­ламуса. Формируясь в нейросекреторных клетках этих ядер, гормоны в виде гранул транспортируются по их аксонам, и после разрушения гранул выделяются в капиллярную сеть нейрогипофиза. Антидиуретический гормон регулирует об­ратное всасывание воды в почечных канальцах и воздействует на гладкую муску­латуру артериол, повышая, таким образом, артериальное давление. Окситоцин стимулирует сокращение гладкой мускулатуры матки и молочных желез. Регуляция секреции обоих гормонов осуществляется по механизму нейрогуморального рефлекса, афферентное звено которого представлено нервными путя­ми от осморецепторов или механорецепторов до гипоталамуса, а эфферентное звено — поступающим в кровяное русло гормоном. Кроме того, регуляция функ­ций молочной железы может осуществляться на первых порах чисто гумораль­ным путем за счет изменения гормонального фона во время беременности. Если гормоны задней доли гипофиза продуцируются нейросекреторными клетками гипоталамических ядер, то все гормоны передней доли секретируются клетками самого аденогипофиза. В зависимости от мишеней, на которые направлено их действие, гормоны аденогипофиза подразделяются на гландотропные, влияющие на другие периферические эндокринные железы, и эффекторные, воздействующие непосредственно на ткани. К первой группе от­носятся кортикотропин (адренокортикотропный гормон, АКТГ) — регулирует секрецию глюкокортикоидов в коре надпочечников (Избыток АКТГ приводит к гиперкортицизму, т.е. увеличенной продукции кортикостероидов, преимущественно глюкокортикоидов. Это заболевание развивается при аденоме гипофиза и носит название болезни Иценко—Кушинга. Основные проявления ее: гипертония, ожирение, имеющее локальный характер (лицо и туловище), гипергликемия, снижение иммунной защиты организма. Недостаток гормона ведет к уменьшению продукции глюкокортикоидов, что проявляется нарушением метаболизма и сни-



Поделиться:


Последнее изменение этой страницы: 2016-08-12; просмотров: 437; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.152.162 (0.016 с.)