Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Законы раздражения. Действие постоянного тока на возбудимые ткани. Понятие о функциональной лабильности ткани. Парабиоз Введенского.

Поиск

Эти законы отражают определенную зависимость между действием раздражителя и ответной реакцией возбудимой ткани. К законам раздражения относятся: закон силы, закон «все или ни-

ничего», закон раздражения Дюбуа-Реймона (аккомодации), закон силы-времени (силы-длительности), закон полярного действия постоянного тока, закон физиологического электротона. Закон силы: чем больше сила раздражителя, тем больше величина ответной реакции. В соответствии с этим законом функционирует скелетная мышца. Амплитуда ее сокращений постепенно увеличивается с увеличением силы раздражителя вплоть до достижения максимальных значений. Это обусловлено тем, что скелетная мышца состоит из множества мышечных волокон, имеющих различную возбудимость. На пороговые раздражители отвечают только волокна, имеющие самую высокую возбудимость, амплитуда мышечного сокращения при этом минимальна. Увеличение силы раздражителя приводит к постепенному вовлечению волокон, имеющих меньшую возбудимость, поэтому амплитуда сокращения мышцы усиливается. Когда в реакции участвуют все мышечные волокна данной мышцы, дальнейшее повышение силы раздражителя не приводит к увеличению амплитуды сокращения. Закон «все или ничего»: подпороговые раздражители не вызывают ответной реакции («ничего»), на пороговые раздражители возникает максимальная ответная реакция («все»). По закону «все или ничего» сокращаются сердечная мышца и одиночное мышечное волокно. Закон «все или ничего» не абсолютен. Во-первых, на раздражители подпороговой силы не возникает видимой ответной реакции, но в ткани происходят изменения мембранного потенциала покоя в виде возникновения местного возбуждения (локального ответа). Во-вторых, сердечная мышца, растянутая кровью, реагирует по закону «все или ничего», но амплитуда ее сокращения будет больше по сравнению с таковой при сокращении нерастянутой сердечной мышцы. Закон раздражения Дюбуа-Реймона (аккомодации): стимулирующее действие постоянного тока зависит не только от абсолютной величины силы тока, но и от скорости нарастания тока во времени. При действии медленно нарастающего тока возбуждение не возникает, так как происходит приспособление возбудимой ткани к действию этого раздражителя, что получило название аккомодации. Аккомодация обусловлена тем, что при действии медленно нарастающего раздражителя в мембране происходит повышение критического уровня деполяризации. При снижении скорости нарастания силы раздражителя до некоторого

минимального значения ПД не возникает, так как деполяризация мембраны является пусковым стимулом к началу двух процессов: быстрого, ведущего к повышению натриевой проницаемости и тем самым обусловливающего возникновение потенциала действия, и медленного, приводящего к инактивации натриевой проницаемости и как следствие этого — к окончанию потенциала действия. При быстром нарастании стимула повышение натриевой проницаемости успевает достичь значительной величины прежде, чем наступит инактивация натриевой проницаемости. При медленном нарастании тока на первый план выступают процессы инактивации, приводящие к повышению порога генерации ПД. Способность к аккомодации различных структур неодинакова. Наиболее высокая она у двигательных нервных волокон, а наиболее низкая у сердечной мышцы, гладких мышц кишечника, желудка. Закон силы-времени: раздражающее действие постоянного тока зависит не только от его величины, но и от времени, в течение которого он действует. Чем больше ток, тем меньше времени он должен действовать на возбудимые ткани, чтобы вызвать возбуждение. Исследования зависимости силы-длительности показали, что она имеет гиперболический характер. Ток меньше некоторой минимальной величины не вызывает возбуждение, как бы длительно он не действовал, и чем короче импульсы тока, тем меньшую раздражающую способность они имеют. Причиной такой зависимости является мембранная емкость. Очень «короткие» токи не успевают разрядить эту емкость до критического уровня деполяризации. Минимальная величина тока, способная вызвать возбуждение при неограниченно длительном его действии, называется реобазой. Время, в течение которого ток, равный реобазе, вызывает возбуждение, называется полезным временем. Хронаксия — минимальное время, в течение которого ток, равный двум реобазам, вызывает ответную реакцию. Закон полярного действия постоянного тока: при замыкании тока возбуждение возникает под катодом, а при размыкании — под анодом. Прохождение постоянного электрического тока через нервное или мышечное волокно вызывает изменение мембранного потенциала. Так, в области приложения катода положительный потенциал на наружной стороне мембраны уменьшается, возникает деполяризация, которая быстро достигает критического уровня и вызывает возбуждение. В области же приложения анода положительный потенциал на наружной стороне мембраны возрастает, происходит гиперполяризация мембраны и возбуждение не возникает. Но при этом под анодом критический уровень деполяризации смещается к уровню потенциала покоя. Поэтому при размыкании цепи тока гиперполяризация на мембране исчезает, и потенциал покоя, возвращаясь к исходной величине, достигает смещенного критического уровня и возникает возбуждение. Закон физиологического электротона: действие постоянного тока на ткань сопровождается изменением ее возбудимости. При прохождении постоянного тока через нерв или мышцу порог раздражения под катодом и в соседних с ним участках понижается вследствие деполяризации мембраны (возбудимость повышается). В области приложения анода происходит повышение порога раздражения, т. е. снижение возбудимости вследствие гиперполяризации мембраны. Эти изменения возбудимости под катодом и анодом получили название электротона (электротоническое изменение возбудимости). Повышение возбудимости под катодам называется катэлектротоном, а снижение возбудимости под анодом — анэлектротоном. При дальнейшем действии постоянного тока первоначальное повышение возбудимости под катодом сменяется ее понижением, развивается так называемая католическая депрессия. Первоначальное же снижение возбудимости под анодом сменяется ее повышением — анодная экзальтация. При этом в области приложения катода — инактивация натриевых каналов, а в области действия анода происходит снижение калиевой проницаемости и ослабление исходной инактивации натриевой проницаемости. Нервные волокна обладают лабильностью (функциональной подвижностью) — способностью воспроизводить определенное количество циклов возбуждения в единицу времени в соответствии с ритмом действующих раздражителей. Мерой лабильности

является максимальное количество циклов возбуждения, которое способно воспроизвести нервное волокно в соответствии с ритмом раздражения без искажений. Лабильность определяется длительностью потенциала действия (длительностью фазы абсолютной рефрактерное™), у нервных волокон лабильность очень вы-

высокая (до 1000 Гц). Н. Е. Введенский A891 г.) обнаружил, что если участок нерва подвергнуть воздействию повреждающего агента (химического вещества, нагревания или охлаждения, постоянного тока), то лабильность такого участка резко снижается. Восстановление исходного состояния нервного волокна после каждого потенциала действия в поврежденном участке происходит медленно. При действии на этот участок частых раздражителей он не может воспроизвести ритм раздражения — проведение импульсов нарушается. Такое состояние было названо парабиозом. В развитии парабиоза различают три последовательно сменяющие друг друга фазы: уравнительную, парадоксальную, тормозную. В уравнительную фазу ответные реакции на частые и редкие раздражители становятся одинаковыми. В нормальных условиях величина ответной реакции иннервируемых нервом мышечных волокон зависит от частоты раздражения: на редкие раздражители ответная реакция меньше, а на частые — больше. В начальную стадию парабиоза при редком ритме раздражений B5 Гц) все импульсы проводятся через поврежденный участок, так как возбудимость после предыдущего импульса успевает восстановиться. При высоком ритме раздражений A00 Гц) последующие импульсы могут поступать в период рефрактерности, поэтому часть импульсов не проводится. Например, если проводится только каждое четвертое возбуждение (т.е. 25 импульсов из 100), то амплитуда ответной реакции становится такой же, как на редкие раздражители B5 Гц) — происходит уравнивание ответной реакции. В парадоксальную фазу происходит дальнейшее снижение лабильности. Ответная реакция возникает и на редкие, и на частые раздражители, но на частые она меньше, так как они еще больше снижают лабильность, удлиняя фазу абсолютной рефрактерности. В результате ответная реакция на редкие раздражители будет больше, чем на частые. ' В тормозную фазу и редкие, и частые раздражители не вызывают ответной реакции. При этом мембрана нервного волокна деполяризована и не способна генерировать ПД, т.е. нерв утрачивает способность к проведению возбуждений. Явление парабиоза лежит в основе локального обезболивания. Влияние анестезирующих веществ связано с нарушением механизма проведения возбуждения по нервным волокнам и снижением лабильности. Парабиоз — явление обратимое. Если парабиотическое вещество действует недолго, то после прекращения его действия нерв выходит из состояния парабиоза через те же фазы, но в обратной последовательности. Возникновение парабиотического состояния связано с тем, что при действии на нервное волокно парабиотического фактора нарушается способность мембраны увеличивать натриевую проницаемость (инактивация натриевых каналов) в ответ на раздражение, и проведение следующего импульса блокируется.

 



Поделиться:


Последнее изменение этой страницы: 2016-08-12; просмотров: 385; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.16.48.143 (0.009 с.)