Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Сложение колебаний одного направления с близкими частотами, биения, амплитуда биений.

Поиск

Пусть точка одновременно участвует в двух гармонических колебаниях одинакового периода, направленных вдоль одной прямой.

Сложение колебаний будем проводить методом векторных диаграмм (рис. 2.2). Пусть колебания заданы уравнениями

  и (2.2.1)  

Рис. 2.2

Отложим из точки О вектор под углом φ1 к опорной линии и вектор под углом φ2. Оба вектора вращаются против часовой стрелки с одинаковой угловой скоростью ω, поэтому их разность фаз не зависит от времени (). Такие колебания называют когерентными.

Нам известно, что суммарная проекция вектора равна сумме проекций на эту же ось. Поэтому результирующее колебание может быть изображено вектором амплитуды , вращающимся вокруг точки О с той же угловой скоростью ω, что и , и . Результирующее колебание должно быть также гармоническим с частотой ω:

.

По правилу сложения векторов найдем суммарную амплитуду:

Результирующую амплитуду найдем по формуле

  . (2.2.2)  

Начальная фаза определяется из соотношения

  . (2.2.3)  

Таким образом, тело, участвуя в двух гармонических колебаниях одного направления и одинаковой частоты, совершает также гармоническое колебание в том же направлении и с той же частотой, что и складываемые колебания.

Из (2.2.2) следует, что амплитуда А результирующего колебания зависит от разности начальных фаз . Возможные значения А лежат в диапазоне (амплитуда не может быть отрицательной).

Рассмотрим несколько простых случаев.

1. Разность фаз равна нулю или четному числу π, то есть , где . Тогда и

  , (2.2.4)  

так как , т.е. амплитуда результирующего колебания А равна сумме амплитуд складываемых колебаний (колебания синфазны) (рис. 2.3).

Рис. 2.3

2. Разность фаз равна нечетному числу π, то есть , где . Тогда . Отсюда

  . (2.2.5)  

На рис. 2.4 изображена амплитуда результирующего колебания А, равная разности амплитуд складываемых колебаний (колебания в противофазе).

Рис. 2.4

3. Разность фаз изменяется во времени произвольным образом:

  (2.2.6)  

Из уравнения (2.2.6) следует, что и будет изменяться в соответствии с величиной . Поэтому при сложении некогерентных колебаний не имеет смысла говорить о сложении амплитуд, но в некоторых случаях наблюдаются вполне определенные закономерности. Для практики особый интерес представляет случай, когда два складываемых колебания одинакового направления мало отличаются по частоте. В результате сложения этих колебаний получаются колебания с периодически изменяющейся амплитудой.

Периодические изменения амплитуды колебания, возникающие при сложении двух гармонических колебаний с близкими частотами, называются биениями. Строго говоря, это уже не гармонические колебания.

Пусть амплитуды складываемых колебаний равны А, а частоты равны ω и , причем . Начало отсчета выбираем так, чтобы начальные фазы обоих колебаний были равны нулю:

Сложим эти выражения, пренебрегая , так как .

  . (2.2.7)  

Результирующее колебание (2.2.7) можно рассматривать как гармоническое с частотой ω и амплитудой А б, которая изменяется по следующему периодическому закону:

  ; (2.2.8)  

.

Характер зависимости (2.2.8) показан на рис. 2.5, где сплошные жирные линии дают график результирующего колебания, а огибающие их – график медленно меняющейся по уравнению (2.2.7) амплитуды.

Рис. 2.5

Определение частоты тона (звука определенной высоты) биений между эталонным и измеряемым колебаниями – наиболее широко применяемый на практике метод сравнения измеряемой величины с эталонной. Метод биений используется для настройки музыкальных инструментов, анализа слуха и т.д.

Вообще, колебания вида называются модулированными. Частные случаи: амплитудная модуляция и модулирование по фазе или частоте. Биение – простейший вид модулированных колебаний.

Любые сложные периодические колебания можно представить в виде суперпозиции одновременно совершающихся гармонических колебаний с различными амплитудами, начальными фазами, а также частотами, кратными циклической частоте ω:

.

Представление периодической функции в таком виде связывают с понятием гармонического анализа сложного периодического колебания, или разложения Фурье (то есть представление сложных модулированных колебаний в виде ряда (суммы) простых гармонических колебаний). Слагаемые ряда Фурье, определяющие гармонические колебания с частотами ω, 2ω, 3ω,..., называются первой (или основной), второй, третьей и т.д. гармониками сложного периодического колебания.



Поделиться:


Последнее изменение этой страницы: 2016-08-10; просмотров: 485; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.220.85.96 (0.008 с.)