Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Применение комбинаторного анализаСодержание книги
Поиск на нашем сайте
Теорема. Из элементов и элементов можно образовать пар . Доказательство. Составим из этих пар прямоугольную таблицу, состоящую из строк и столбцов, так, чтобы пара стояла на пересечении i- ой строки и j -го столбца. В этом случае каждая пара появляется один и только один раз. Число элементов такой таблицы равно . n Пример 4. Найти числовсевозможных исходов при бросании двух игральных костей. m Решение. Очевидно, что каждый элемент пары принимает шесть значений. Следовательно, существует возможных комбинаций. l
Определение. Перестановкой из различных элементов называется любой упорядоченный набор этих элементов. Теорема. Число различных перестановок из различных элементов вычисляется по формуле: . (2.2.1) Доказательство. Первый элемент можно выбрать способами, второй элемент можно выбрать способами (т.к. один элемент уже выбран), третий — способами и т.д. В итоге получим: . n
Определение. Размещением из различных элементов по называется любой упорядоченный набор из элементов, выбранных из общей совокупности в элементов. Теорема. Число различных размещений из элементов по вычисляется по формуле: . (2.2.2) Доказательство. Данная теорема доказывается аналогично предыдущей теореме.
Определение. Сочетанием из различных элементов по называется любой неупорядоченный набор из элементов, выбранных из общей совокупности в элементов. Теорема. Число сочетаний из элементов по вычисляется по формуле: . (2.2.3) Доказательство. Число сочетаний отличается от числа размещений только тем, что входящие в него элементы неупорядочены; различных элементов можно упорядочить способами. Следовательно, каждому размещению соответствует сочетаний. Отсюда: или . n Способ выбора, приводящий к перестановкам, размещениям и сочетаниям, называется выборкой без возвращения. Рассмотрим выборку с возвращением. В этом случае каждый взятый элемент из общей совокупности возвращается обратно. Таким образом, один и тот же элемент может быть выбран несколько раз. Теорема. Число выборок элементов с возвращением из различных элементов равно . Доказательство. Первый элемент может быть выбран способами, второй также способами и т.д. В итоге . n
Пример 5. (Гипергеометрическое распределение). Предположим, что имеются шаров: красных и черных. Случайным образом выбираются шаров. Найти вероятность того, что выбранная группа будет содержать ровно красных и черных шаров (событие А). m Решение. Число способов, которыми можно выбрать, красных шаров из шаров ровно . Аналогично, число способов, которыми можно выбрать черных шаров из равно . Так как любой выбор красных шаров может комбинировать (составлять пару) с любым выбором черных шаров, имеем число благоприятных исходов, равное . Число всевозможных исходов равно . Используя классическое определение вероятности, получаем: . l
Теорема. Пусть — целые числа, такие, что . Число способов, которыми множество из элементов можно разделить на упорядоченных подмножеств, из которых первое подмножество содержит элементов, второе – элементов и т.д., равно . (2.2.4) Доказательство. Прежде чем доказывать теорему, заметим, что порядок подмножеств существенен в том смысле, что и представляет собой разные разбиения; однако, порядок элементов внутри групп игнорируется. Перейдем к доказательству теоремы. Сначала необходимо выбрать элементов из ; из оставшихся необходимо выбрать элементов и т.д. Получаем: .n
Пример 6. Колода карт (52 листа) делится поровну между четырьмя игроками. Найти вероятность того, что каждый игрок имеет туза (событие А). m Решение. Используя (2.2.4), найдем число всевозможных исходов: . Найдем число благоприятных исходов. Четыре туза можно упорядочить способами, и каждый порядок представляет одну возможность получения одного туза каждым игроком. Оставшиеся 48 карт, согласно (2.2.4), можно распределить способами. Таким образом, число благоприятных исходов равно . Следовательно, искомая вероятность равна . l
Пример 7. Из полной колоды карт (52 листа) вынимаются сразу несколько карт. Какое минимальное число кар нужно вынуть, чтобы с вероятностью, большей чем , можно было утверждать, что среди них будут карты одной масти. m Решение. Рассмотрим события — среди вынутых карт есть хотя бы две карты одной масти. Пусть . В этом случае число всевозможных исходов равно . Число благоприятных исходов получаем следующим образом: выбираем масть (4 способа), затем две карты этой масти , т.е. . Следовательно, используя классическое определение вероятности, получаем: . Пусть . В этом случае число всевозможных исходов равно . Число благоприятных исходов получаем следующим образом: у нас либо две карты одной масти, либо три карты одной масти, т.е. . Следовательно, используя классическое определение вероятности, получаем: . Таким образом, необходимо вынуть три карты. l
|
||||
Последнее изменение этой страницы: 2016-08-14; просмотров: 129; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.238.6 (0.007 с.) |