Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Однофакторная линейная регрессияСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Регрессионные методы позволяют выявить связи между переменными, причем особенно эффективно, если эти связи не совершенны или не имеют точного функционального описания между этими переменными. В эконометрическом анализе используются независимые переменные хi и одна зависимая переменная y. Регрессией в общем виде представляется функцией следующего вида
(2.1) где - известные коэффициенты регрессии; xi - переменная. В эконометрическом анализе переменные представляют собой статистические данные, например стоимость товара, объем продаж, курс валюты. Так как эти данные чаще всего «привязаны» ко времени, то в эконометрических моделях используют и другие обозначения переменных, такие как Xt, где индекс t обозначает, что мы используем временной ряд. e - невязка (ошибка, отклонение), обусловленная недостаточной пригодностью модели и ошибкой данных. Обычно эти причины являются смешанными.
Обозначения в модели 2.1 интерпретируются достаточно просто. Например, сумму
можно представить как сумму произведений коэффициента b и переменной х . В последующем для упрощения выражений знак суммы мы будем обозначать без индексов, как .
В том случае, если исследуется влияние одной переменной или фактора, то выражение (2) упрощается к виду
. (2.2)
Выражение (2) представляет собой линейную однофакторную регрессию. Геометрический смысл уравнения 2.2 поясним на рис. 1.
Пусть мы имеем четыре измерения переменной х, которые имеют конкретное значение р1,р2, р3, р4. Этим значениям соответствуют определенные значения зависимой переменной y. Тогда уравнение регрессии 2.2 представляет собой прямую линию проведенную определенным образом через точки р1,р2, р3, р4. Так как истинное значение переменной нам неизвестно, то мы предполагаем, что оно располагается на этой прямой в точках Q1, Q2, Q3, Q4. Свободный член а уравнения 2.2 имеет реальный экономический смысл. Это минимальное или максимальное значение зависимой переменной (результативного признака).
Коэффициент b представляет собой постоянную величину, равную отношению
Какова природа ошибки e? Существует, по крайней мере, две причины появления в модели 2.2 этой ошибки: 1. Наша модель является упрощением действительности и на самом деле есть еще и другие параметры, от которых зависит переменная y. Например, расходы на питания в семье зависят от размера заработной платы членов семьи, национальных и религиозных традиций, уровня инфляции и т.д.
2. Скорее всего, наши измерения содержат ошибки. Например, данные по расходам семьи на питание составляются на основе анкетного опроса и эти данные не всегда отражают истинное значение параметров. Таким образом, можно считать, что ошибка e есть случайная величина с некоторой функцией распределения. Для нахождения коэффициентов уравнений (2.1) и (2.2) используется метод наименьших квадратов. Сущность метода заключается в том, чтобы минимизировать сумму квадратов отклонений , (2.3) где - значение результата, вычисленное по уравнению (2) в точке xi ; yi - экспериментальное значение результата в этой же точке. Рассмотрим задачу «наилучшей» аппроксимации набора наблюдений Yt,, t = 1,..., n, линейной функцией (2.2) минимизацией функционала
Запишем необходимые условия экстремума
Раскроем скобки и получим стандартную форму нормальных уравнений (для краткости опустим индексы суммирования у знака суммы):
а, b – решения системы (2.4) можно легко найти:
Порядок построения эконометрической модели рассмотрим на следующем примере [3]. В таблице 2 представлены статистические данные о расходах на питание и душевом доходе для девяти групп семей. Требуется проанализировать зависимость величины расходов на питание от величины душевого дохода. В соответствии с этим первый показатель будет результативным признаком, который обозначим у, а другой будет факторным признакам, или просто фактором, и мы обозначим его соответственно х1. Это обозначение не случайно, в последующем примере мы рассмотрим более сложную модель, в которой будет два фактора х1 и х2.
Таблица 2
Рассмотрим однофакторную линейную модель зависимости расходов на питание (у) от величины душевого дохода семей (х1).
Расчеты проведем в таблице 3. Таблица 3
Используя данные табл.3, и (2.4) получим систему уравнений:
Можно найти значения коэффициентов по формулам 2.5, но мы покажем как можно использовать более общий подход к решению задачи по правилу Крамера, для этого найдем значения определителей системы (2.5):
Тот же результат можно получить, используя формулы 2.5.
Таким образом, модель имеет вид:
y = 660,11 + 0,108 Х1 Уравнение (2.6) называется уравнением регрессии, коэффициент b — коэффициентом регрессии. Направление связи между у и x1 определяет знак коэффициента регрессии а1. В нашем случае данная связь является прямой и положительной. Вычислим дисперсии оценок а и b. Известно [1], что дисперсии оценок а и b можно определить как
отклонения исходной выборки от среднего значения;
- значения расходов на питание, вычисленные по модели 2.6 Для проведения расчетов дисперсий полученных оценок используем таблицу 4
Таблица 4
Следующий этап – оценка значимости коэффициентов полученной модели. На этом этапе проверяется статистическая гипотеза о равенстве нулю коэффициентов модели а и b. Проверяем гипотезу Н0: b=0 против гипотезы Н1:b#0 при заданном уровне значимости гипотезы a. Обычно a =0.05. При проверке используется распределение Стьюдента. Для этого рассчитывают значение t-критерия для исходной выборки наблюдений по формуле (2.10)
Затем сравнивают его с табличным значением с (n-2) степенями свободы при заданной степени свободы. Это значение берут из таблицы значений t -критерия (приложение 4, таблица 2). Для a =0,05 при степени своды равном 7 табличное значение t –критерия (tp) равно 2,37. Если расчетное значение критерия больше табличного, то гипотеза Н0 отклоняется и принимается гипотеза Н1: значение коэффициента отличается от 0. В нашем случае . Так как 7,35>2,37, то делаем вывод о значимости коэффициента b в модели. Расчетное значение t-критерия для коэффициента а равно 5,62, что тоже свидетельствует о его значимости в модели. Для оценки тесноты связи модели с исходными данными рассчитывается коэффициент детерминации (2.11)
Для определения коэффициента детерминации проведем расчеты с использованием таблицы 5. Таблица 5
Значения ESS возьмем из таблицы 4.
Коэффициент детерминации показывает долю изменения (вариации) результативного признака под действием факторного признака. В нашем случае R 2 = 0,884, а это означает, что фактором душевого дохода можно объяснить почти 88% изменения расходов на питание. Коэффициент корреляции можно определить как
(2.12)
Чем ближе значение коэффициента корреляции к единице, тем теснее корреля-ционная связь. Полученное значение коэффициента корреляции свидетельствует, что связь между расходами на питание и душевым доходом очень тесная. Коэффициенты регрессии (в рассматриваемом случае это коэффициент b) нельзя использовать для непосредственной оценки влияния факторов на результативный признак из-за различия единиц измерения исследуемых показателей. Для этих целей вычисляются коэффициенты эластичности. Коэффициент эластичности для рассматриваемой модели парной регрессии рассчитывается по формуле:
Он показывает, насколько процентов изменяется результативный признак у при изменении факторного признака Xt на один процент. В нашем примере коэффициент эластичности расходов на питание в зависимости от душевого дохода будет равен
Это означает, что при увеличении душевого дохода на 1 % расходы на питание увеличатся на 0,49 %. Качество эконометрических моделей может быть установлено на основе анализа остаточной последовательности. Остаточная последовательность проверяется на выполнение свойств случайной компоненты экономического ряда: близость нулю выборочного среднего, случайный характер отклонений, отсутствие автокорреляции и нормальность закона распределения. О качестве моделей регрессии можно судить также по значениям коэффициента корреляции и коэффициента детерминации для однофакторной модели. Чем ближе абсолютные величины указанных коэффициентов к 1, тем теснее связь между изучаемым признаком и выбранными факторами и, следовательно, с тем большей уверенностью можно судить об адекватности построенной модели, включающей в себя наиболее влияющие факторы. Для оценки точности регрессионных моделей обычно используются, средняя относительная ошибка аппроксимации (2.11). Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как
(2.14)
Расчетное значение F-критерия сравнивают c табличным (таблица 1, приложения 4) при заданном уровне значимости гипотезы (обычно 0,05) и степенях свободы f1 = n – 1 и f2 = n - m - 1, где n – обьем выборки, m – число включенных факторов в модель. Для нашего случая f1 = 8, f2 = 7. Табличное значение F – критерия находим по таблице 2 приложения 4 Ft = 3,50. Если расчетное значение F – критерия больше табличного, то модель считается адекватной исходным данным. В нашем случае 53,50 > 3,50, следовательно, модель значима и адекватно описывает исходные данные. Эти же расчеты можно выполнить значительно быстрее при использовании ЭВМ. В электронных таблицах EXCEL в разделе меню СЕРВИС при полной инсталляции пакета присутствует функция АНАЛИЗ. При выборе этой функции открывается окно (рис.2). В предлагаемом перечне необходимо выбрать раздел регрессия и в появившейся форме необходимо заполнить соответствующие поля. Исходные данные необходимо представить на рабочем листе в виде, показанном на рис.3.
На рис. 4 представлена форма с заполненными исходными данными для проведения регрессионного анализа.
Рис. 4
После нажатия клавиши OK, проводится расчет и результаты заносятся на новый лист в следующем виде (рис. 5).
Рис. 5. Результаты расчетов в электронных таблицах EXCEL
Использование электронных таблиц EXCEL позволяет обойтись без таблиц с критическими значениями t-критерия и F-критерия. В результатах расчетов появляются новые значения Значимость F и Значимость t, которое определяет расчетный уровень значимости F и t-критериев по заданным исходным данным. Если это значение меньше заданного (0,05), то модель считается адекватной исходным данным и значимой.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-08-01; просмотров: 1503; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.98.186 (0.014 с.) |