Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Проблемы гетероскедастичностиСодержание книги
Поиск на нашем сайте
Гетероскедастичность – крайне неприятное свойство исходных, когда дисперсия ошибки зависит от номера наблюдения. На графике гетероскедастичность проявляется в том, что с увеличением или уменьшением порядкового номера измерения увеличивается рассеивание измерений около линии тренда. Это может привести к существенным погрешностям оценок коэффициентов уравнения регрессии. Гетероскедастичность возникает тогда, когда объекты, как правило, неоднородны. Существует несколько методов коррекции, решающих проблему гетероскедастичности. Наиболее эффективный из них – метод взвешенных наименьших квадратов. Сущность метода чрезвычайно проста. Пусть исходная модель имеет вид:
.
Тогда, делением каждого элемента системы на значение st мы приходим к другой системе
(2.26) где взвешенная дисперсия; , n – число измерений.
Таким образом, с помощью преобразования 2.26 мы устраняем гетероскедастичность. Кроме того, логарифмирование исходных данных также в некоторых случаях снижает ошибки определения параметров модели, вызванные гетероскедастичностью. Резюме Рассмотренные методы корреляционно-регрессионного анализа позволяют находить оценки параметров регрессионных моделей и анализировать их. Безусловно, что разработка эконометрических моделей наиболее эффективна при использовании ЭВМ. Результаты эконометрического анализа могут быть существенно искажены, если переменные мультиколлинеарны. Эффективного решения этой проблемы в настоящее время не существует. Удаление из анализа переменных, сильно коррелирующих друг с другом, может привести к искажению полученных оценок.
Эконометрический анализ на основе временных рядов
Основные понятия в теории временных рядов Временной ряд – это некоторая последовательность чисел (измерений) экономического или бизнес-процесса во времени. Его элементы измерены в последовательные моменты времени, обычно через равные промежутки. Как правило, составляющие временной ряд числа или элементы временного ряда, нумеруют в соответствии с номером момента времени, к которому они относятся. Таким образом, порядок следования элементов временного ряда весьма существен. Расширенное понятие временного ряда. Понятие временного ряда часто толкуют расширительно. Например, одновременно могут регистрироваться несколько характеристик упомянутого процесса. В этом случае говорят о многомерных временных рядах. Если измерения производятся непрерывно, говорят о временных рядах с непрерывным временем, или случайных процессах. Наконец, текущая переменная может иметь не временной, а какой-нибудь иной характер, например пространственный. В этом случае говорят о случайных полях. Примеры временных рядов. В экономике это ежедневные цены на акции, курсы валют, еженедельные и месячные объемы продаж, годовые объемы производства и т.п. На рис. 5 показан пример временного ряда с объемами перевозок пассажиров авиарейсами за 12 лет в США.
На графике видна устойчивая тенденция роста объема перевозок от года к году (тренд). Кроме того, у этого ряда есть сезонные компоненты. Объем перевозок резко возрастает в летние месяцы и снижается в зимние. В качестве циклической компоненты ряда здесь можно выделить повторяющиеся пики снижения перевозок на период праздника Рождества (24 декабря) и т.д. Вполне естественно, что этот ряд в достаточной степени предсказуем. На рис.6 представлен другой ряд, с объемами продаж компьютерной техники. На графике отчетливо видно резкое снижение объема продаж на 146 месяце. Такой скачок называется интервенцией. Модель этого ряда можно построить, исключив определенным способом интервенцию, но сделать прогноз таких резких и неповторяющихся скачков этими методами невозможно. Временные ряды называются стационарными, если числовые характеристики ряда являются постоянными на любом участке временного ряда. Реально в жизни это не так, но существуют методы, позволяющие преобразовать временной ряд и привести его к стационарному.
|
|||||||
Последнее изменение этой страницы: 2016-08-01; просмотров: 288; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.109.147 (0.01 с.) |