Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Лекция 5. Математическое обеспечение САПРСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Компоненты математического обеспечения. Математическое обеспечение (МО) объединяет в себе математические модели проектируемых объектов, методы и алгоритмы выполнения проектных процедур, используемые при автоматизированном проектировании. Компоненты МО определяются базовым математическим аппаратом, специфичным для каждого из иерархических уровней проектирования. На микроуровне типичные математические модели представлены дифференциальными уравнениями в частных производных вместе с краевыми условиями. Допущение, выражаемое дискретизацией пространства, позволяет перейти к моделям макроуровня. Моделями макроуровня, называемыми также сосредоточенными, являются системы алгебраических и обыкновенных дифференциальных уравнений, поскольку независимой переменной здесь остается только время. Упрощение описания отдельных компонентов (деталей) позволяет исследовать модели процессов в устройствах, приборах, механических узлах, число компонентов в которых может доходить до нескольких тысяч. В тех случаях, когда число компонентов в исследуемой системе превышает некоторый порог, сложность модели системы на макроуровне вновь становится чрезмерной. Поэтому, принимая соответствующие допущения, переходят на функционально-логический уровень. На этом уровне используют аппарат передаточных функций для исследования аналоговых (непрерывных) процессов или аппарат математической логики и конечных автоматов, если объектом исследования является дискретный процесс, т. е. процесс с дискретным множеством состояний. Требования к математическим моделям и численным методам в САПР Основными требованиями к МО являются требования адекватности, точности, экономичности. Модель всегда лишь приближенно отражает некоторые свойства объекта. Адекватность имеет место, если модель отражает заданные свойства объекта с приемлемой точностью. Под точностью понимают степень соответствия оценок одноименных свойств объекта и модели. Экономичность (вычислительная эффективность) определяется затратами ресурсов, требуемых для реализации модели. Поскольку в САПР используются математические модели, далее речь пойдет о характеристиках именно математических моделей, и экономичность будет характеризоваться затратами машинных времени и памяти. Адекватность оценивается перечнем отражаемых свойств и областями адекватности. Область адекватности — область в пространстве параметров, в пределах которой погрешности модели остаются в допустимых пределах. Например, область адекватности линеаризованной модели поверхности детали определяется системой неравенств. Место процедур формирования моделей в маршрутах проектирования. Вычислительный процесс при анализе состоит из этапов формирования модели и ее исследования (решения). В свою очередь, формирование модели включает две процедуры: во-первых, разработку моделей отдельных компонентов, во-вторых, формирование модели системы из моделей компонентов. Первая из этих процедур выполняется предварительно по отношению к типовым компонентам вне маршрута проектирования конкретных объектов. Как правило, модели компонентов разрабатываются специалистами в прикладных областях, причем знающими требования к моделям и формам их представления в САПР. Обычно в помощь разработчику моделей в САПР предлагаются методики и вспомогательные средства, например, в виде программ анализа для экспериментальной отработки моделей. Созданные модели включаются в библиотеки моделей прикладных программ анализа. На маршруте проектирования каждого нового объекта выполняется вторая процедура (рисунок 4) – формирование модели системы с использованием библиотечных моделей компонентов. Как правило, эта процедура выполняется автоматически по алгоритмам, включенным в заранее разработанные программы анализа. Примеры таких программ имеются в различных приложениях и прежде всего в отраслях общего машиностроения и радиоэлектроники. Рисунок 4 –Место процедур формирования моделей на маршрутах проектирования Математические модели в процедурах анализа на макроуровне Исходные уравнения моделей. Исходное математическое описание процессов в объектах на макроуровне представлено системами обыкновенных дифференциальных и алгебраических уравнений. Аналитические решения таких систем при типичных значениях их порядков в практических задачах получить не удается, поэтому в САПР преимущественно используются алгоритмические модели. Исходными для формирования математических моделей объектов на макроуровне являются компонентные и топологические уравнения. Компонентными уравнениями называют уравнения, описывающие свойства элементов (компонентов), другими словами, это уравнения математических моделей элементов (ММЭ). Топологические уравнения описывают взаимосвязи в составе моделируемой системы. В совокупности компонентные и топологические уравнения конкретной физической системы представляют собой исходную математическую модель системы (ММС). Требования к математическим моделям Требования к математическим моделям: · универсальность; · адекватность; · точность; · экономичность. Степень универсальности ММ характеризует полноту отображения в модели свойств реального объекта. Точность ММ оценивается степенью совпадения значений параметров реального объекта и значений тех же параметров, рассчитанных с помощью оцениваемой ММ. Адекватность ММ – способность отражать заданные свойства объекта с погрешностью не выше заданной. Адекватность ММ, как правило, имеет место лишь в ограниченной области изменения внешних параметров - в области адекватности (ОА). Экономичность модели характеризуется затратами вычислительных ресурсов (времени и памяти) на ее реализацию.
|
||||
Последнее изменение этой страницы: 2016-07-16; просмотров: 1206; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.223.195.30 (0.009 с.) |