Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Лекция 5. Математическое обеспечение САПРСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Компоненты математического обеспечения. Математическое обеспечение (МО) объединяет в себе математические модели проектируемых объектов, методы и алгоритмы выполнения проектных процедур, используемые при автоматизированном проектировании. Компоненты МО определяются базовым математическим аппаратом, специфичным для каждого из иерархических уровней проектирования. На микроуровне типичные математические модели представлены дифференциальными уравнениями в частных производных вместе с краевыми условиями. Допущение, выражаемое дискретизацией пространства, позволяет перейти к моделям макроуровня. Моделями макроуровня, называемыми также сосредоточенными, являются системы алгебраических и обыкновенных дифференциальных уравнений, поскольку независимой переменной здесь остается только время. Упрощение описания отдельных компонентов (деталей) позволяет исследовать модели процессов в устройствах, приборах, механических узлах, число компонентов в которых может доходить до нескольких тысяч. В тех случаях, когда число компонентов в исследуемой системе превышает некоторый порог, сложность модели системы на макроуровне вновь становится чрезмерной. Поэтому, принимая соответствующие допущения, переходят на функционально-логический уровень. На этом уровне используют аппарат передаточных функций для исследования аналоговых (непрерывных) процессов или аппарат математической логики и конечных автоматов, если объектом исследования является дискретный процесс, т. е. процесс с дискретным множеством состояний. Требования к математическим моделям и численным методам в САПР Основными требованиями к МО являются требования адекватности, точности, экономичности. Модель всегда лишь приближенно отражает некоторые свойства объекта. Адекватность имеет место, если модель отражает заданные свойства объекта с приемлемой точностью. Под точностью понимают степень соответствия оценок одноименных свойств объекта и модели. Экономичность (вычислительная эффективность) определяется затратами ресурсов, требуемых для реализации модели. Поскольку в САПР используются математические модели, далее речь пойдет о характеристиках именно математических моделей, и экономичность будет характеризоваться затратами машинных времени и памяти. Адекватность оценивается перечнем отражаемых свойств и областями адекватности. Область адекватности — область в пространстве параметров, в пределах которой погрешности модели остаются в допустимых пределах. Например, область адекватности линеаризованной модели поверхности детали определяется системой неравенств. Место процедур формирования моделей в маршрутах проектирования. Вычислительный процесс при анализе состоит из этапов формирования модели и ее исследования (решения). В свою очередь, формирование модели включает две процедуры: во-первых, разработку моделей отдельных компонентов, во-вторых, формирование модели системы из моделей компонентов. Первая из этих процедур выполняется предварительно по отношению к типовым компонентам вне маршрута проектирования конкретных объектов. Как правило, модели компонентов разрабатываются специалистами в прикладных областях, причем знающими требования к моделям и формам их представления в САПР. Обычно в помощь разработчику моделей в САПР предлагаются методики и вспомогательные средства, например, в виде программ анализа для экспериментальной отработки моделей. Созданные модели включаются в библиотеки моделей прикладных программ анализа. На маршруте проектирования каждого нового объекта выполняется вторая процедура (рисунок 4) – формирование модели системы с использованием библиотечных моделей компонентов. Как правило, эта процедура выполняется автоматически по алгоритмам, включенным в заранее разработанные программы анализа. Примеры таких программ имеются в различных приложениях и прежде всего в отраслях общего машиностроения и радиоэлектроники.
Рисунок 4 –Место процедур формирования моделей на маршрутах проектирования Математические модели в процедурах анализа на макроуровне Исходные уравнения моделей. Исходное математическое описание процессов в объектах на макроуровне представлено системами обыкновенных дифференциальных и алгебраических уравнений. Аналитические решения таких систем при типичных значениях их порядков в практических задачах получить не удается, поэтому в САПР преимущественно используются алгоритмические модели. Исходными для формирования математических моделей объектов на макроуровне являются компонентные и топологические уравнения. Компонентными уравнениями называют уравнения, описывающие свойства элементов (компонентов), другими словами, это уравнения математических моделей элементов (ММЭ). Топологические уравнения описывают взаимосвязи в составе моделируемой системы. В совокупности компонентные и топологические уравнения конкретной физической системы представляют собой исходную математическую модель системы (ММС). Требования к математическим моделям Требования к математическим моделям: · универсальность; · адекватность; · точность; · экономичность. Степень универсальности ММ характеризует полноту отображения в модели свойств реального объекта. Точность ММ оценивается степенью совпадения значений параметров реального объекта и значений тех же параметров, рассчитанных с помощью оцениваемой ММ. Адекватность ММ – способность отражать заданные свойства объекта с погрешностью не выше заданной. Адекватность ММ, как правило, имеет место лишь в ограниченной области изменения внешних параметров - в области адекватности (ОА). Экономичность модели характеризуется затратами вычислительных ресурсов (времени и памяти) на ее реализацию.
|
||||
|
Последнее изменение этой страницы: 2016-07-16; просмотров: 1461; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.33 (0.009 с.) |