Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Электромагнитный момент МПТ.Содержание книги Похожие статьи вашей тематики
Поиск на нашем сайте
При нагрузке машины по проводникам обмотки якоря протекает ток ( –ток цепи якоря). При взаимодействии этого тока с магнитным полем возникает электромагнитная сила, которая для одного проводника обмотки равна
fx= .
Будем считать, что индукция сохраняет свое значение по всей активной длине проводника. Сила fx создает момент
Мх=fx .
Все N проводников обмотки якоря создадут электромагнитный момент
М= .
Длина всех проводников одинаковая и по ним протекает один и тот же ток ia. Тогда
М= = .
Если принять, что индукция во всех точках полюсного деления равна
Вср= ,
То получим =N ∙Вср, или =N∙ .
Подставим в уравнение электромагнитного момента
М=
При неизменном направлении вращения якоря направление момента зависит от режима работы машины. При работе в генераторном режиме ЭДС якоря будет больше, чем напряжения на выводе машины, поэтому ток в цепи якоря имеет такое же направление, что и ЭДС. Момент направлен против направления вращения, т.е. оказывает тормозящее действие. В двигательном режиме работы машины напряжение сети больше ЭДС якоря. Ток изменяет свое направление, т.е. направлен навстречу ЭДС. При этом изменяется направление момента. Он будет действовать в сторону вращения якоря. Частота вращения двигателя постоянного тока:
где U — напряжение питающей сети; Iя — ток якоря; Rя — сопротивление цепн якоря; kc — коэффициент, характеризующий магнитную систему; Ф — магнитный поток электродвигателя. Характеристики двигателей параллельного возбуждения Электродвигателем параллельного возбуждения называется двигатель постоянного сока, обмотка возбуждения которого включена параллельно обмотке якоря (рис. 1). При снятии характеристик к цепи якоря подводится номинальное напряжение Uн=const. Рис. 1 — Схема двигателя параллельного возбуждения Ток, потребляемый двигателем из сети, определяется суммой I=Ia+Iв, ток возбуждения обычно равен Iв=(0,03...0,04) Iн. Все характеристики двигателя снимаются при постоянных сопротивлениях в цепях возбуждения rв=const и якоря Σr = const. Скоростная характеристика. Зависимость n=f (Ia) при Uн=const и Iв=const Из уравнения ЭДС для электродвигателя имеем Как видно из выражения,частота вращения двигателя зависит от двух факторов — изменения тока нагрузки и потока. При увеличении тока нагрузки падение напряжения в сопротивлении цепи якоря увеличивается, а частота вращения двигателя уменьшается. Поперечная реакция якоря размагничивает двигатель, т.е. с ростом тока Ia уменьшается поток и, следовательно, увеличиваются обороты двигателя. Таким образом, оба фактора действуют в отношении оборотов машины встречно и вид скоростной характеристики будет определяется их результирующим действием. На рис. 2 показаны три разные скоростные характеристики двигателя (кривые 1,2,3). Кривая 1 — скоростная характеристика при преобладании влияния Ia∑r,кривая 2 — оба фактора приблизительно уравновешиваются, кривая 3 — преобладает фактор размагничивающего действия реакции якоря. Рис. 2 — Характеристики двигателя параллельного возбуждения Ввиду того, что в реальных двигателях изменение потока Ф незначительно, скоростная характеристика является практически прямой линией. На ряде современных машин параллельного возбуждения для компенсации влияния поперечной реакции якоря устанавливается дополнительная стабилизирующая обмотка возбуждения, которая полностью или частично компенсирует влияние реакции якоря. Нормальной формой скоростной характеристики, при которой обеспечивается устойчивая работа двигателя, является характеристика вида кривой 1. Наклон характеристики определяется величиной сопротивления цепи якоря Σr без учета реакции якоря. Когда добавочных сопротивлений в цепь якоря не включено, характеристика называется естественной. Естественная характеристика двигателя параллельного возбуждения достаточно жесткая. Обычно, где no — частота вращения при холостом ходе. При включении в цепь якоря добавочных сопротивлений Rрг, наклон характеристик увеличивается, они становятся «мягкими» и называются искусственными или реостатными. Моментная характеристика – это зависимость М=f (Ia) при rв=const, U=Uн и Σr=const. В установившемся режиме работы двигателя согласно имеем Mэм = M2+M0 = смIaФ. Если бы в процессе работы машины поток Ф не изменялся, то моментная характеристика представляла бы собой прямую (характеристика 4, рисунок 2). В действительности поток Ф с ростом тока Ia несколько уменьшается из-за размагничивающего действия реакции якоря, поэтому моментная характеристика слегка наклонена вниз (кривая 5). Характеристика полезного момента располагается ниже кривой электромагнитного момента на величину момента холостого хода (кривая 6). Характеристика КПД η=f (Ia) снимается при U=Uн, rв=const, Σr=const и имеет типичный для электродвигателей вид (характеристика 7 на рис. 2). КПД быстро растет при увеличении нагрузки от холостого хода до 0,25Рн, достигает максимального значения при Р=(0,5...0,75) Рн, а затем до Р=Рн остается почти неизменным. Обычно в двигателях малой мощности η=0,75...0,85, а в двигателях средней и большой мощности η=0,85...0,94. Механическая характеристика представляет зависимость n=f (M) при U=Uн, Iв=const и Σr=const. Аналитическое выражение для механической характеристики можно получить из уравнения ЭДС электродвигателя Определив ток Iа из выражения М = сеIaФ и подставив это значение тока в выражение выше, получим Если пренебречь реакцией якоря и считать, что поток Ф не изменяется, то механические характеристики электродвигателя параллельного возбуждения можно представить в виде прямых (рис. 3), наклон которых зависит от величины сопротивления Rрг включенного в цепь якоря. При Rрг=0 характеристика называется естественной. Рис. 3 — Механические характеристики двигателя параллельного возбуждения Следует помнить, что при обрыве цепи возбуждения Iв=0 обороты двигателя n→∞, т.е. двигатель идет «вразнос», поэтому его необходимо немедленно отключить от сети.
|
||||
Последнее изменение этой страницы: 2016-07-16; просмотров: 657; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.189.186.247 (0.006 с.) |