Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Оценка алгоритмической сложностиСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Использование быстрого алгоритма не приведёт к ожидаемым результатам, если для его работы понадобится больше памяти, чем есть у компьютера. Память или время Многие алгоритмы предлагают выбор между объёмом памяти и скоростью. Задачу можно решить быстро, использую большой объём памяти, или медленнее, занимая меньший объём. При сравнении различных алгоритмов важно знать, как их сложность зависит от объёма входных данных. Допустим, при сортировке одним методом обработка тысячи чисел занимает 1 с., а обработка миллиона чисел – 10 с., при использовании другого алгоритма может потребоваться 2 с. и 5 с. соответственно. В таких условиях нельзя однозначно сказать, какой алгоритм лучше. Определение сложности Наиболее сложными частями программы обычно является выполнение циклов и вызов процедур. В предыдущем примере весь алгоритм выполнен с помощью двух циклов. Сложность рекурсивных алгоритмов Простая рекурсия рекурсивными процедурами называются процедуры, которые вызывают сами себя. Их сложность определить довольно тяжело. Сложность этих алгоритмов зависит не только от сложности внутренних циклов, но и от количества итераций рекурсии. Рекурсивная процедура может выглядеть достаточно простой, но она может серьёзно усложнить программу, многократно вызывая себя. Многократная рекурсия Рекурсивный алгоритм, который вызывает себя несколько раз, называется многократной рекурсией. Такие процедуры гораздо сложнее анализировать, кроме того, они могут сделать алгоритм гораздо сложнее. Объёмная сложность рекурсивных алгоритмов Для всех рекурсивных алгоритмов очень важно понятие объёмной сложности. При каждом вызове процедура запрашивает небольшой объём памяти, но этот объём может значительно увеличиваться в процессе рекурсивных вызовов. По этой причине всегда необходимо проводить хотя бы поверхностный анализ объёмной сложности рекурсивных процедур. Оценка сложности алгоритма до порядка является верхней границей сложности алгоритмов. Если программа имеет большой порядок сложности, это вовсе не означает, что алгоритм будет выполняться действительно долго. На некоторых наборах данных выполнение алгоритма занимает намного меньше времени, чем можно предположить на основе их сложности.
43 Понятие и примеры рекурсивного алгоритма Рекурсия (от латинского recursio - возвращение) - это такой способ организации вычислительного процесса, при котором процедура или функция в ходе выполнения составляющих ее операторов обращается сама к себе. Для того, чтобы такое обращение не было бесконечным, в тексте подпрограммы должно быть условие, по достижению которого дальнейшего обращения не происходит. Рекурсия достаточно широко применяется в программировании, что основано на рекурсивной природе многих математических алгоритмов, например для вычисления факториала натурального числа(факториалом числа называется произведение всех натуральных чисел). Функция использует рекурсивные обращения, что делает ее гораздо компактнее, и основана на очевидном соотношении: N! = (N-1)!*N Иными словами, чтобы получить значение факториала от числа N, достаточно умножить на N значение факториала от предыдущего числа: Function RecFact(N:integer): LongInt;
Полностью программа, вычисляющая факториал числа, будет выглядеть так: Program Rekurs;
Основные задачи динамического программирования Для выбора оптимального решения при выполнении задач программирования иногда требуется перебирать большое количество комбинаций данных, что нагружает память персонального компьютера. К таким методам относится, например, метод программирования «разделяй и властвуй». В данном случае алгоритмом предусмотрено разделение задачи на отдельные мелкие подзадачи. Такой метод применяется только в тех случаях, когда мелкие подзадачи независимы между собой. Для того чтобы избежать выполнения лишней работы в том случае, если подзадачи взаимозависимы, используется метод динамического программирования, предложенный американцем Р.Беллманом в 50-х годах. Суть метода Динамическое программирование заключается в определении оптимального решения n-мерной задачи, разделяя ее n отдельных этапов. Каждый из них является подзадачей по отношению к одной переменной. Основным преимуществом такого подхода можно считать то, что разработчики занимаются одномерными оптимизационными задачами подзадач вместо n-мерной задачи, а решение главной задачи собирается «снизу вверх». Целесообразно применять динамическое программирование в тех случаях, когда подзадачи взаимосвязаны, т.е. имеют общие модули. Алгоритмом предусмотрено решение каждой из подзадач один раз, и сохранение ответов выполняется в специальной таблице. Это дает возможность не вычислять ответ заново при встрече с аналогичной подзадачей. Задача динамического программирования решает вопрос оптимизации. Автором этого метода Р. Беллманом был сформулирован принцип оптимальности: каким бы ни являлось начальное состояние на каждом из шагов и решение, определенное на этом шаге, все следующие выбираются оптимальными по отношению к тому состоянию, которое принимает система в конце шага. Метод усовершенствует выполнение задач, решаемых с помощью перебора вариантов или рекурсий. Построение алгоритма задачи Динамическое программирование предполагает построение такого алгоритма задач, при котором задача так разбивается на две или больше подзадач, чтобы ее решение складывалось из оптимального решения всех подзадач, входящих в нее. Далее возникает необходимость в написании рекуррентного соотношения и вычислении оптимального значения параметра для задачи в целом. Иногда на 3-м шаге нужно дополнительно запоминать некоторую вспомогательную информацию о ходе выполнения каждой подзадачи. Это называется обратным ходом. Применение метода Динамическое программирование применяется при наличии двух характерных признаков: оптимальность для подзадач; наличие в задаче перекрывающихся подзадач. Решая оптимизационную задачу методом динамического программирования, сначала необходимо описать структуру решения. Задача обладает оптимальностью, если решение задачи складывается из оптимальных решений ее подзадач. В этом случае целесообразно использовать динамическое программирование. Второе свойство задачи, существенное при данном методе, - небольшое число подзадач. Рекурсивное решение задачи использует одни и те же перекрывающиеся подзадачи, количество которых зависит от размера исходной информации. Ответ хранится в специальной таблице, программа экономит время, пользуясь этими данными. Особенно эффективно применение динамического программирования тогда, когда по существу задачи нужно принимать решения поэтапно. Например, рассмотрим простой пример задачи замены и ремонта оборудования. Допустим, на литейной машине завода по изготовлению шин делают одновременно шины в двух разных формах. В том случае, если одна из форм выходит из строя, приходится машину разбирать. Понятно, что иногда выгоднее заменить и вторую форму для того, чтобы не разбирать машину на случай, если и эта форма окажется неработоспособной на следующем этапе. Тем более, бывает проще заменить обе работающие формы до того, как они начнут выходить из строя. Метод динамического программирования определяет наилучшую стратегию в вопросе о замене таких форм, учитывая все факторы: выгоду от продолжения эксплуатации форм, потери от простоя машины, стоимость забракованных шин и другое.
|
||||
Последнее изменение этой страницы: 2016-07-16; просмотров: 650; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.226.34.148 (0.008 с.) |