Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Аутентификация и идентификацияСодержание книги
Поиск на нашем сайте
Идентификацию и аутентификацию можно считать основой программно-технических средств безопасности, поскольку остальные сервисы рассчитаны на обслуживание именованных субъектов. Идентификация и аутентификация - это первая линия обороны, "проходная" информационного пространства организации. Идентификация позволяет субъекту (пользователю, процессу, действующему от имени определенного пользователя, или иному аппаратно-программному компоненту) назвать себя (сообщить свое имя). Посредством аутентификации вторая сторона убеждается, что субъект действительно тот, за кого он себя выдает. Аутентификация бывает односторонней (обычно клиент доказывает свою подлинность серверу) и двусторонней (взаимной). Пример односторонней аутентификации - процедура входа пользователя в систему. Идентификация обеспечивает выполнение следующих функций: - установление подлинности и определение полномочий субъекта при его допуске в систему, - контролирование установленных полномочий в процессе сеанса работы; - регистрация действий и др. Аутентификацией (установлением подлинности) называется проверка принадлежности субъекту доступа предъявленного им идентификатора и подтверждение его подлинности. Другими словами, аутентификация заключается в проверке: является ли подключающийся субъект тем, за кого он себя выдает.Обычно методы аутентификации классифицируют по используемым средствам. В этом случае указанные методы делят на четыре группы: 1. Основанные на знании лицом, имеющим право на доступ к ресурсам системы, некоторой секретной информации – пароля. 2. Основанные на использовании уникального предмета: жетона, электронной карточки и др. 3. Основанные на измерении биометрических параметров человека – физиологических или поведенческих атрибутах живого организма. 4. Основанные на информации, ассоциированной с пользователем, например, с его координатами.Однако такие методы нельзя использовать при идентификации процессов или данных (объектов данных), так как они только начинают развиваться (имеются проблемы со стандартизацией и распространением), требуют пока сложного и дорогостоящего оборудования. Это обусловливает их использование пока только на особо важных объектах и системах. Примерами внедрения указанных методов являются системы идентификации пользователя по рисунку радужной оболочки глаза, отпечаткам ладони, формам ушей, инфракрасной картине капиллярных сосудов, по почерку, по запаху, по тембру голоса и даже по ДНК. Примеры методов биометрии Физиологические методы Поведенческие методы • Снятие отпечатков пальцев • Сканирование радужной оболочки глаза • Сканирование сетчатки глаза • Геометрия кисти руки • Распознавание черт лица • Анализ подписиСуммируя возможности средств аутентификации, ее можно классифицировать по уровню информационной безопасности на три категории: 1. Статическая аутентификация; 2. Устойчивая аутентификация; 3. Постоянная аутентификация. Современные средства идентификации/аутентификации должны поддерживать концепцию единого входа в сеть. Единый вход в сеть - это, в первую очередь, требование удобства для пользователей. Если в корпоративной сети много информационных сервисов, допускающих независимое обращение, то многократная идентификация/аутентификация становится слишком обременительной. Биометрия предлагает быстрый, удобный, точный, надежный и не очень дорогой способ идентификации с огромным количеством самых разнообразных применений. Нет такой единственной биометрической технологии, которая подошла бы для всех нужд. Все биометрические системы имеют свои преимущества и недостатки. Есть, однако, общие черты, которые делают биометрические технологии полезными. Во-первых, любая система должна быть основана на характеристике, которая является различимой и уникальной. Например, на протяжении века, правоохранительные органы использовали отпечатки пальцев для идентификации людей. Технология анализа формы ушной раковины является одной из самых последних подходов в биометрической идентификации человека. С помощью даже недорогой Web-камеры можно получать довольно надежные образцы для сравнения и идентификации. Биометрические системы аутентификации — системы аутентификации, использующие для удостоверения личности людей их биометрические данные. Биометрическая аутентификация — процесс доказательства и проверки подлинности заявленного пользователем имени, через предъявление пользователем своего биометрического образа и путем преобразования этого образа в соответствии с заранее определенным протоколом аутентификации. Не следует путать данные системы с системами биометрической идентификации, каковыми являются к примеру системы распознавания лиц водителей и биометрические средства учёта рабочего времени. Биометрические системы аутентификации работают в активном, а не пассивном режиме и почти всегда подразумевают авторизацию. Хотя данные системы не идентичны системам авторизации, они часто используются совместно (например, в дверных замках с проверкой отпечатка пальца). Биометрические технологии используются уже более 20 лет. Тем не менее участники рынка безопасности продолжают внимательно следить за их развитием, а также прогнозировать: как инновации в области биометрии могут повлиять на облик Биометрические системы на базе распознавания венозного рисунка и радужной оболочки глаза обеспечивают комбинацию высокой достоверности идентификации, надежности и привлекательности цены. В ближайшие годы они найдут широкое применение для систем, устанавливаемых на объектах повышенного уровня опасности.
Понятие электронной цифровой подписи. Электро́нная по́дпись (ЭП), Электро́нная цифровая по́дпись (ЭЦП) — реквизит электронного документа, полученный в результате криптографического преобразования информации с использованием закрытого ключа подписи и позволяющий проверить отсутствие искажения информации в электронном документе с момента формирования подписи (целостность), принадлежность подписи владельцу сертификата ключа подписи (авторство), а в случае успешной проверки подтвердить факт подписания электронного документа (неотказуемость). Алгоритмы: Использование хэш-функций Поскольку подписываемые документы — переменного (и как правило достаточно большого) объёма, в схемах ЭП зачастую подпись ставится не на сам документ, а на его хэш. Для вычисления хэша используются криптографические хэш-функции, что гарантирует выявление изменений документа при проверке подписи. Хэш-функции не являются частью алгоритма ЭП, поэтому в схеме может быть использована любая надёжная хэш-функция. Использование хэш-функций даёт следующие преимущества: Вычислительная сложность. Обычно хэш цифрового документа делается во много раз меньшего объёма, чем объём исходного документа, и алгоритмы вычисления хэша являются более быстрыми, чем алгоритмы ЭП. Поэтому формировать хэш документа и подписывать его получается намного быстрее, чем подписывать сам документ. Совместимость. Большинство алгоритмов оперирует со строками бит данных, но некоторые используют другие представления. Хэш-функцию можно использовать для преобразования произвольного входного текста в подходящий формат. Целостность. Без использования хэш-функции большой электронный документ в некоторых схемах нужно разделять на достаточно малые блоки для применения ЭП. При верификации невозможно определить, все ли блоки получены и в правильном ли они порядке. Использование хэш-функции не обязательно при электронной подписи, а сама функция не является частью алгоритма ЭП, поэтому хэш-функция может использоваться любая или не использоваться вообще. В большинстве ранних систем ЭП использовались функции с секретом, которые по своему назначению близки к односторонним функциям. Такие системы уязвимы к атакам с использованием открытого ключа (см. ниже), так как, выбрав произвольную цифровую подпись и применив к ней алгоритм верификации, можно получить исходный текст. Чтобы избежать этого, вместе с цифровой подписью используется хэш-функция, то есть, вычисление подписи осуществляется не относительно самого документа, а относительно его хэша. В этом случае в результате верификации можно получить только хэш исходного текста, следовательно, если используемая хэш-функция криптографически стойкая, то получить исходный текст будет вычислительно сложно, а значит атака такого типа становится невозможной. Симметричная схема Симметричные схемы ЭП менее распространены чем асимметричные, так как после появления концепции цифровой подписи не удалось реализовать эффективные алгоритмы подписи, основанные на известных в то время симметричных шифрах. Первыми, кто обратил внимание на возможность симметричной схемы цифровой подписи, были основоположники самого понятия ЭП Диффи и Хеллман, которые опубликовали описание алгоритма подписи одного бита с помощью блочного шифра. Асимметричные схемы цифровой подписи опираются на вычислительно сложные задачи, сложность которых ещё не доказана, поэтому невозможно определить, будут ли эти схемы сломаны в ближайшее время, как это произошло со схемой, основанной на задаче об укладке ранца. Также для увеличения криптостойкости нужно увеличивать длину ключей, что приводит к необходимости переписывать программы, реализующие асимметричные схемы, и в некоторых случаях перепроектировать аппаратуру. Симметричные схемы основаны на хорошо изученных блочных шифрах. В связи с этим симметричные схемы имеют следующие преимущества: · Стойкость симметричных схем ЭП вытекает из стойкости используемых блочных шифров, надежность которых также хорошо изучена. · Если стойкость шифра окажется недостаточной, его легко можно будет заменить на более стойкий с минимальными изменениями в реализации. Однако у симметричных ЭП есть и ряд недостатков: · Нужно подписывать отдельно каждый бит передаваемой информации, что приводит к значительному увеличению подписи. Подпись может превосходить сообщение по размеру на два порядка. · Сгенерированные для подписи ключи могут быть использованы только один раз, так как после подписывания раскрывается половина секретного ключа. Из-за рассмотренных недостатков симметричная схема ЭЦП Диффи-Хелмана не применяется, а используется её модификация, разработанная Березиным и Дорошкевичем, в которой подписывается сразу группа из нескольких бит. Это приводит к уменьшению размеров подписи, но к увеличению объёма вычислений. Для преодоления проблемы «одноразовости» ключей используется генерация отдельных ключей из главного ключа. Асимметричная схема Асимметричные схемы ЭП относятся к криптосистемам с открытым ключом. В отличие от асимметричных алгоритмов шифрования, в которых шифрование производится с помощью открытого ключа, а расшифровка — с помощью закрытого, в асимметричных схемах цифровой подписи подписание производится с применением закрытого ключа, а проверка подписи — с применением открытого. Общепризнанная схема цифровой подписи охватывает три процесса Генерация ключевой пары. При помощи алгоритма генерации ключа равновероятным образом из набора возможных закрытых ключей выбирается закрытый ключ, вычисляется соответствующий ему открытый ключ. Формирование подписи. Для заданного электронного документа с помощью закрытого ключа вычисляется подпись. Проверка (верификация) подписи. Для данных документа и подписи с помощью открытого ключа определяется действительность подписи. Для того, чтобы использование цифровой подписи имело смысл, необходимо выполнение двух условий: Верификация подписи должна производиться открытым ключом, соответствующим именно тому закрытому ключу, который использовался при подписании. Без обладания закрытым ключом должно быть вычислительно сложно создать легитимную цифровую подпись. Следует отличать электронную цифровую подпись от кода аутентичности сообщения (MAC).
|
||||
Последнее изменение этой страницы: 2016-07-16; просмотров: 683; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.27.70 (0.007 с.) |