Глава 2. Пространство, время и взгляд наблюдателя 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Глава 2. Пространство, время и взгляд наблюдателя



В июне 1905 г. двадцатишестилетний Альберт Эйнштейн послал в немецкий журнал Annalen der Physik статью, в которой бросил вызов парадоксу о скорости света, который привлек его внимание десять лет назад, когда он был еще подростком. Перевернув последнюю страницу рукописи Эйнштейна, редактор журнала, Макс Планк, понял, что общепринятые научные представления низвергнуты. Без шума и фанфар скромный чиновник патентного бюро из швейцарского города Берна радикально изменил традиционные представления о пространстве и времени, заменив их новыми понятиями, бросившими вызов всему, к чему мы привыкли на основе нашего жизненного опыта.

Парадокс, который беспокоил Эйнштейна в течение десяти лет, состоял в следующем. В середине XIX в., после тщательного изучения результатов экспериментальных работ английского физика Майкла Фарадея, шотландский физик Джеймс Клерк Максвелл сумел объединить понятия электричества и магнетизма в единую теорию электромагнитного поля. Если вам когда-либо приходилось находиться на вершине горы перед началом сильной грозы или стоять рядом с генератором Ван де Граафа, вы почувствовали, что такое электромагнитное поле, потому что вы его ощутили физически. Для тех, кто не имеет такого опыта, скажем, что поле похоже на поток электрических и магнитных силовых линий, пронизывающих область пространства. Например, если рассыпать железные опилки возле магнита, то можно увидеть, что они образуют упорядоченный рисунок, следующий невидимым силовым линиям магнитного поля. Сняв шерстяной свитер в особенно сухой день, вы слышите потрескивание, сопровождающееся одним-двумя короткими разрядами, что свидетельствует о существовании силовых линий электрического поля, порождаемых стекающими с волокон вашего свитера электрическими зарядами. Помимо объединения этих и всех других электрических и магнитных явлений в рамках единого математического описания, теория Максвелла довольно неожиданно привела к выводу, что электромагнитные возмущения распространяются с постоянной, никогда не изменяющейся скоростью, равной скорости света. На основании этого факта Максвелл заключил, что видимый свет представляет собой не что иное, как определенный тип электромагнитной волны. Как нам сегодня известно, взаимодействуя с химическими со-


24 Часть II. Дилемма пространства, времени и квантов

единениями в сетчатке глаза, эта волна дает человеку зрение. Более того (и это ключевой момент), теория Максвелла также показала, что все электромагнитные волны, в том числе и видимый свет, являются своего рода вечными странниками. Они никогда не останавливаются. Они никогда не замедляют своего движения. Свет всегда движется со скоростью света.

Все это хорошо и замечательно до тех пор, пока мы, вслед за шестнадцатилетним Эйнштейном, не зададимся вопросом: что произойдет, если пуститься в погоню за светом, двигаясь при этом со скоростью света? Интуиция, основанная на законах движения Ньютона, подсказывает, что мы догоним световые волны, и они будут казаться нам неподвижными, свет как бы остановится. Но согласно теории Максвелла и не вызывающим сомнений экспериментальным данным, такого явления, как неподвижный свет, попросту не существует — никому и никогда не удавалось держать на своей ладони неподвижный луч света. Отсюда и возникает парадокс. К счастью, Эйнштейн не знал о том, что многие ведущие физики мира сражались с этой задачей (часто следуя пути, ведущему в тупик), и обдумывал парадокс Максвелла и Ньютона без помех в уединении со своими собственными мыслями.

В этой главе мы расскажем, как Эйнштейн разрешил это противоречие в своей специальной теории относительности, навсегда изменив наши представления о пространстве и времени. Может показаться странным, что ключевым моментом в специальной теории относительности является точное понимание того, как выглядит мир для людей, часто называемых «наблюдателями», которые движутся по отношению друг к другу. На первый взгляд это может показаться просто схоластическим упражнением. Но оказалось, что это вовсе не так: благодаря Эйнштейну путешествие с воображаемыми наблюдателями, двигающимися за световым лучом, приводит к глубоким выводам, позволяющим понять, как необычно могут выглядеть самые заурядные ситуации для людей, находящихся в относительном движении.

Интуиция и ее изъяны

Повседневный опыт может подсказать несколько примеров, в которых восприятие ситуации такими наблюдателями различно. Например, деревья, растущие вдоль шоссе, будут выглядеть движущимися для водителя едущего автомобиля и неподвижными для путника, присевшего на обочине. Аналогично, приборная панель автомобиля не кажется движущейся для водителя (по крайней мере, мы надеемся на это), но, как и все другие части автомобиля, движется с точки зрения путника. Это настолько фундаментальные и интуитивно ощущаемые свойства окружающего нас мира, что мы редко обращаем на них внимание.

Специальная теория относительности утверждает, однако, что различия в картине, видимой двумя такими наблюдателями, являются более тонкими и глубокими. В ней высказывается странное утверждение, что наблюдатели, находящиеся в относительном движении, будут по-разному воспринимать расстояние и время. Это означает, как мы увидим ниже, что одинаковые наручные часы у двух наблюдателей, перемещающихся друг относительно друга, будут идти с разной скоростью и покажут разную длительность промежутка времени между двумя выбранными событиями. Специальная теория относительности показывает, что это утверждение не связано с точностью часов, а представляет собой неотъемлемое свойство самого времени.

Аналогично, если движущиеся по отношению друг к другу наблюдатели будут проводить измерения расстояния с помощью совершенно одинаковых рулеток, они получат разные значения длины. И снова дело здесь не в погрешностях средств измерения и не в ошибках при их использовании. Самые точные в мире измерительные устройства подтвердят, что пространство и время, измеряемые как расстояния и промежутки времени, воспринимаются разными наблюдателями по-разному. Специальная теория относительности в окончательной формулировке Эйнштейна разрешает противоречие между нашими интуитивными представлениями о движении и свойствами света. Од-


Глава 2. Пространство, время и взгляд наблюдателя 25

нако это решение имеет свою цену — движущиеся относительно друг друг наблюдатели будут по-разному воспринимать пространство и время.

С тех пор, как Эйнштейн сообщил миру о своем поразительном открытии, прошло почти сто лет, однако до сих пор большинство из нас воспринимает пространство и время как абсолютные понятия. Мы не имеем интуитивного знания понятий специальной теории относительности, мы не чувствуем ее. Следствия специальной теории относительности не являются частью нашей интуиции. Причина этого весьма проста: эффекты, обусловленные специальной теорией относительности, зависят от скорости движения. При скоростях, с которыми движутся автомобили, самолеты и даже космические челноки, эти эффекты необычайно малы. Различия в восприятии пространства и времени между неподвижными наблюдателями и наблюдателями, едущими в машинах или летящими в самолетах, безусловно, существуют, но они столь малы, что остаются незамеченными. Однако если бы мы путешествовали в космическом корабле будущего, скорость которого составляет значительную часть скорости света, то эффекты, предсказываемые теорией относительности, были бы совершенно очевидны. Но, конечно, такая возможность пока еще остается в области фантастики. Тем не менее, как мы увидим в последующих разделах, правильно поставленные эксперименты позволяют ясно и точно наблюдать релятивистские свойства пространства и времени, предсказываемые теорией Эйнштейна.

Для того чтобы получить представление о величине рассматриваемых эффектов, представим, что на дворе 1970 г., и в моде большие и быстрые автомобили. Слим, только что потративший все свои сбережения на приобретение нового «Понтиака», отправился вместе со своим братом Джимом на местный гоночный трек, чтобы устроить своей новой машине такой тест-драйв, который ему не позволил продавец. Разогрев машину, Слим устремился по гоночной полосе длиной в один километр со скоростью 200 км/ч, а Джим остался стоять на обочине, засекая время. Желая получить независимое подтверждение, Слим тоже пользуется секундомером, чтобы определить время, за которое машина пройдет полосу. До появления работы Эйнштейна никто не усомнился бы в том, что если секундомеры Слима и Джима работают правильно, они покажут одинаковое время. Однако согласно специальной теории относительности, секундомер Джима покажет 18 с, а секундомер Слима — 17,99999999999969 с — на крошечную долю секунды меньше. Конечно, эта разница настолько мала, что она может быть обнаружена только при измерениях, точность которых во много раз превосходит точность ручных секундомеров, которые запускаются и останавливаются нажатием пальца, точность систем хронометража, используемых на олимпийских играх, и даже точность прецизионных атомных часов самой современной конструкции. Поэтому неудивительно, что наш повседневный опыт не обнаруживает того, что течение времени зависит от того, с какой скоростью мы движемся.

Похожие различия обнаружатся и при измерении длины. Допустим, что в ходе следующего испытания Джим решил использовать хитрый трюк для измерения длины новой машины Слима: он запускает секундомер, когда мимо него проходит передняя часть автомобиля, и останавливает его, как только рядом с ним оказывается задняя часть машины. Поскольку Джим знает, что автомобиль Слима движется со скоростью 200 км/ч, он может рассчитать его длину, умножив скорость на время, зафиксированное его секундомером. И вновь, до появления теории Эйнштейна, ни у кого не возникли бы сомнения, что длина, которую таким косвенным способом определил Джим, в точности совпадет с длиной, которую тщательно вымерил Слим, когда его машина стояла без движения на полу автомобильного салона. Специальная теория относительности, напротив, утверждает, что если Слим и Джим выполнили измерения точно, и Слим установил, что длина его машины составляет, скажем, ровно 5 м, то измерения Джима дадут цифру 4,999999999999914 м — на крошечную долю метра меньше. Как и в случае измерения времени, это различие настолько


26 Часть II. Дилемма пространства, времени и квантов

мало, что обычные инструменты не в состоянии обнаружить его.

Хотя эти различия чрезвычайно малы, они указывают на фатальный изъян в общепринятой концепции универсального и неизменного пространства и времени. По мере того как относительная скорость наблюдателей, таких как Слим и Джим, увеличивается, этот изъян становится все более очевидным. Чтобы различия стали заметными, скорость движения должна составлять существенную долю от максимально возможной скорости — скорости света, которая, согласно теории Максвелла и результатам экспериментальных измерений, составляет примерно 300000 км/с или около 1,08 млрд км/ч. Такой скорости достаточно, чтобы обогнуть земной шар более семи раз в течение одной секунды. Например, если Слим будет двигаться со скоростью не 200 км/ч, а 935 млн км/ч (около 87 % от скорости света), то, как показывают расчеты с использованием математического аппарата специальной теории относительности, длина его машины, измеренная Джимом, составит примерно 2,5 м. Это существенно отличается от результата, полученного Слимом (а также от цифры, приведенной в техническом руководстве к автомобилю). Аналогично, время, за которое автомобиль пройдет гоночную полосу по данным Джима, будет примерно в два раза больше, чем время, измеренное Слимом.

Поскольку такие огромные скорости находятся далеко за пределами технически достижимых, эффекты «замедления времени» и «лоренцевского сокращения», как они называются в специальной литературе, в нашей повседневной жизни чрезвычайно малы. Если бы мы жили в мире, в котором тела обычно двигаются со скоростями, близкими к скорости света, эти свойства пространства и времени были бы настолько понятны нам интуитивно (поскольку мы сталкивались бы с ними постоянно), что заслуживали бы отдельного упоминания не больше, чем рассмотренное в начале этой главы кажущееся движение деревьев на обочине дороги. Но поскольку мы живем в ином мире, эти особенности нам непривычны. Как будет видно ниже, понимание и принятие их требует, чтобы мы подвергли наш взгляд на мир значительным изменениям.

Принцип относительности

В основе специальной теории относительности лежат два простых свойства, имеющих, однако, глубокие корни. Одно из них, как уже упоминалось, касается света; мы будем обсуждать его более подробно в следующем разделе. Другое является более абстрактным. Оно связано не с каким-либо конкретным физическим законом, а относится ко всем законам физики. Это принцип относительности, который базируется на простом факте: всегда, когда речь идет об абсолютной величине или о векторе скорости (величине скорости тела и направлении движения тела), следует точно указать, кто или что выполняет измерения. Важность этого утверждения легко понять на примере следующей ситуации. Представим себе, что Джордж, одетый в космический скафандр с прикрепленной к нему красной сигнальной лампочкой, парит в абсолютной темноте абсолютно пустого космического пространства, вдали от всех планет, звезд и галактик. С точки зрения Джорджа, он находится в полной неподвижности, в однородном безмолвном мраке Вселенной. Вдалеке Джордж замечает слабенький мерцающий зеленый огонек, который постепенно приближается к нему. В "конце концов он приближается так близко, что Джордж видит лампочку, прикрепленную к скафандру другого космонавта, Грейс, которая медленно проплывает мимо него. Пролетая мимо, она машет ему рукой, Джордж отвечает тем же, и она медленно удаляется. С той же достоверностью история могла быть рассказана и Грейс. Начало рассказа будет таким же: Грейс в полном одиночестве, в необъятном безмолвном пространстве. Вдали Грейс замечает мерцающий красный огонек, который постепенно приближается к ней. Наконец огонек подходит достаточно близко, чтобы Грейс могла увидеть, что это лампочка, прикрепленная к скафандру другого космонавта, Джорджа. Он медленно проплывает мимо и, поравнявшись с ней, машет ей рукой. Грейс отвечает, и он растворяется во мраке.


Глава 2. Пространство, время и взгляд наблюдателя 27

Эти две истории описывают одну и ту же ситуацию с двух различных, но равноправных точек зрения. Каждый наблюдатель считал себя неподвижным и воспринимал другого как движущегося. Обе эти точки зрения понятны и оправданы. Поскольку между двумя космонавтами существует симметрия, с фундаментальных позиций нет оснований утверждать, что один из них «прав», а другой «неправ». У каждого одинаковые основания считать себя правым.

Этот пример демонстрирует сущность принципа относительности, которая состоит в том, что понятие движения относительно. Мы можем говорить о движении тела только по отношению к какому-то другому телу. Таким образом, утверждение «Джордж движется со скоростью 10 км/ч» не будет иметь смысла до тех пор, пока мы не укажем тело для сравнения. Утверждение «Джордж движется со скоростью 10 км/ч относительно Грейс» имеет смысл, поскольку теперь мы указали Грейс в качестве точки отсчета. Как показывает наш пример, это последнее утверждение эквивалентно утверждению «Грейс движется со скоростью 10 км/ч относительно Джорджа (в противоположном направлении)». Другими словами, не существует понятия «абсолютного» движения. Движение относительно.

Ключевым моментом в этой истории является то, что ни Джорджа, ни Грейс не толкали, не тянули, не прилагали к ним сил и не оказывали на них какого-либо другого воздействия, которое могло бы нарушить безмятежное состояние свободного равномерного движения, в котором они пребывали. Таким образом, более точная формулировка говорит, что свободное движение имеет смысл только относительно других объектов. Это важное уточнение, поскольку если действуют силы, они могут изменить скорость наблюдателей — величину скорости и/или направления движения, и эти изменения могут быть зафиксированы. Например, если бы за спиной Джорджа был реактивный ранцевый двигатель, Джордж наверняка бы почувствовал, что он движется. Это чувство является внутренним. Если бы ранцевый двигатель работал, Джордж бы знал, что он движется, даже если бы его глаза были закрыты, и он не мог проводить сравнение с другими объектами. Даже без этих сравнений он не мог бы уже утверждать, что был неподвижен, а «остальной мир двигался мимо него». Движение с постоянной скоростью относительно, а движение с непостоянной скоростью, или, иными словами, с ускорением — нет. (Мы вернемся к этому вопросу в следующей главе, когда будем обсуждать ускорение и общую теорию относительности Эйнштейна.)

Помещение этих событий во мрак пустого космического пространства облегчает понимание за счет отсутствия таких привычных объектов, как улицы и здания, которым мы обычно, хотя и не совсем оправданно, присваиваем статус «неподвижных». Однако тот же принцип применим и к земным условиям: с ним приходится сталкиваться и в повседневной жизни1'. Представим, например, что уснув в поезде, вы проснулись как раз в тот момент, когда мимо по параллельному пути проходит другой поезд. Вид из окна полностью закрыт этим поездом, который не дает вам видеть другие объекты, и в течение какого-то времени вы не будете знать, кто движется — ваш поезд, другой или оба сразу. Конечно, если ваш поезд покачивается или постукивает на стыках рельсов, или если он меняет направление движения на повороте пути, вы почувствуете, что движетесь. Но если движение будет плавным, если скорость поезда будет оставаться постоянной, вы будете наблюдать только относительное движение двух поездов, и не сможете утверждать наверняка, который из них движется.

Сделаем еще один шаг. Представим, что вы едете в таком поезде, и опустили шторы, так что окна теперь полностью закрыты. При отсутствии возможности видеть что-либо за пределами купе и при абсолютно постоянной скорости движения поезда у вас не будет никакой возможности определить, движетесь вы или нет. Купе вокруг вас выглядит совершенно одинаково независимо от того, стоит ли поезд или мчится с большой скоростью. Эйнштейн формализовал эту идею, которая на самом деле восходит еще к Галилею, провозгласив, что ни вы, и никакой другой путешественник, не сможете провести в закрытом купе эксперимент, который позво-


28 Часть II. Дилемма пространства, времени и квантов

лил бы определить, движется поезд или нет. Здесь опять работает принцип относительности, поскольку любое свободное движение относительно, оно приобретает смысл только при сравнении с другими объектами или наблюдателями, которые также совершают свободное движение. У вас нет возможности определить состояние вашего движения без прямого или косвенного сравнения с каким-либо «внешним» телом. Понятия «абсолютного» равномерного движения попросту не существует, такое движение приобретает физический смысл только при сравнении.

В действительности Эйнштейн понял, что принцип относительности означает большее: законы физики, каковы бы они ни были, должны быть абсолютно одинаковы для всех наблюдателей, совершающих равномерное движение. Если бы Джордж и Грейс не просто парили в одиночестве в пространстве, а проводили бы одинаковые серии экспериментов на своих космических станциях, результаты, полученные ими, были бы одинаковы. Напомним еще раз, что каждый из них абсолютно убежден, что его или ее станция находится в покое, хотя станции и совершают относительное движение. Если все используемое ими оборудование одинаково, и нет никаких различий в условиях экспериментов, они будут в полностью симметричных условиях. Аналогично, законы физики, которые каждый из них будет выводить из результатов экспериментов, также будут идентичны. Ни сами наблюдатели, ни проводимые ими эксперименты не будут подвержены никакому влиянию, т. е. никоим образом не будут зависеть от равномерного движения. Именно эта простая концепция устанавливает полную симметрию между такими наблюдателями и составляет содержание принципа относительности. Вскоре мы используем всю мощь этого принципа.

Скорость света

Второй ключевой компонент специальной теории относительности связан со светом и свойствами его распространения. Только что мы говорили, что утверждение «Джордж движется со скоростью 10 км/ч» не имеет смысла без указания ориентира для сравнения. Однако в результате почти столетних усилий ряда выдающихся физиков-экспериментаторов было показано: все наблюдатели согласятся с тем, что свет движется со скоростью 300000 км/с, независимо от ориентира для отсчета.

Этот факт потребовал революционных изменений наших взглядов на Вселенную. Попробуем сначала понять его смысл, сопоставляя со сходными утверждениями применительно к более обычным объектам. Представим, что стоит прекрасный солнечный денек, и вы вышли на улицу поиграть в мяч с подругой. В течение какого-то времени вы оба лениво бросали мяч друг другу со скоростью, скажем, 6 м/с. Вдруг налетает неожиданная гроза, и вы оба бежите от нее в поисках укрытия. После того, как гроза прошла, вы решаете вернуться к игре в мяч, но вдруг замечаете, что что-то изменилось. Волосы вашей подружки встали дыбом и торчат в разные стороны, глаза округлились и стали безумными. Взглянув на ее руку, вы со страхом видите, что она больше не хочет играть в мяч, а вместо этого собирается запустить в вас ручной гранатой. Понятно, что ваш энтузиазм по поводу игры в мяч резко идет на убыль, вы поворачиваетесь и бежите. Когда ваша партнерша бросает гранату, она летит в вашу сторону, но поскольку вы бежите, скорость, с которой она приближается к вам, будет меньше 6 м/с. Исходя из повседневного опыта, можно утверждать, что вы можете бежать со скоростью, скажем, 3,6 м/с, и тогда ручная граната будет приближаться к вам со скоростью 6 - 3,6 = 2,4 м/с. Еще один пример. Если вы находитесь в горах, и на вас с грохотом мчится снежная лавина, вы стремитесь повернуться и броситься бежать, поскольку это уменьшит скорость, с которой снег приближается к вам, и даст хоть какую-то надежду на спасение. Как и раньше, для неподвижного наблюдателя скорость приближения лавины будет больше, чем с точки зрения наблюдателя, спасающегося бегством.

Ну а теперь сравним все наши наивные наблюдения за мячами, гранатами и снежными лавинами с фактами, относящимися к свету. Чтобы облегчить сравнение, будем


Глава 2. Пространство, время и взгляд наблюдателя 29

рассматривать луч света как совокупность крошечных «сгустков» или «комочков», известных под названием фотонов (более подробно свойства света будут обсуждаться в главе 4). Когда мы включаем сигнальные огни или испускаем лазерный луч, мы, на самом деле, выстреливаем пучок фотонов в ту сторону, в которую направлено устройство. Как и в случае с гранатами и лавинами, давайте рассмотрим, как движение фотона выглядит для наблюдателя, который находится в движении. Предположим, что ваша потерявшая рассудок подруга вместо гранаты взяла в руки мощный лазер. Если она стреляет из лазера в вашу сторону, а у вас есть под рукой подходящее измерительное устройство, вы можете обнаружить, что скорость приближения фотонов пучка составляет 300 000 км/с. А что произойдет, если вы станете убегать, как вы поступили, столкнувшись с перспективой поиграть с ручной гранатой? Какое значение скорости вы получите для приближающихся фотонов? Для большей внушительности, предположим, что в вашем распоряжении звездный корабль «Энтерпрайз», и вы удираете от своей подружки со скоростью, скажем, 50 000 км/с. Следуя логике традиционного ньютоновского подхода, поскольку вы убегаете, измеренная вами скорость приближающихся фотонов окажется меньше. Соответственно, вы можете рассчитывать, что они приближаются к вам со скоростью, равной 300 000 - 50 000 = 250 000 км/с.

Растущее количество различных экспериментальных данных, первые из которых относятся еще к 1880-м гг., а также тщательный анализ и интерпретация максвелловской электромагнитной теории света, постепенно убедили научное сообщество, что на самом деле вы получите другой результат. Даже несмотря на то, что вы убегаете, результат вашего измерения скорости приближающихся фотонов все равно составит 300000 км/с и ни на йоту меньше. На первый взгляд это выглядит очень забавно и совершенно не согласуется с тем, что происходило, когда вы убегали от приближающегося мяча, гранаты или лавины, однако скорость приближающихся фотонов всегда будет составлять 300 000 км/с. Движетесь ли вы навстречу приближающимся фотонам или преследуете удаляющиеся, не имеет значения: скорость их приближения или удаления будет оставаться совершенно неизменной, и вы всегда получите значение 300000 км/с. Независимо от относительного движения между источником фотонов и наблюдателем, скорость света всегда будет одной и той же2).

Технологические ограничения таковы, что описанные выше «эксперименты» со светом не могут быть проведены. Однако были проведены другие, сопоставимые эксперименты. Например, в 1913 г. голландский физик Биллем де Ситтер предположил, что для измерения влияния движения источника на скорость света могут использоваться движущиеся с большой скоростью двойные звезды (две звезды, которые вращаются одна вокруг другой). Результаты многочисленных экспериментов такого рода, выполненных за последние восемьдесят лет, продемонстрировали, с впечатляющей точностью, что скорость света от движущейся звезды равна скорости света, испускаемого неподвижной звездой, т.е. 300 000 км/с. Более того, в течение прошлого столетия было проведено большое число других, весьма тщательных экспериментов, в ходе которых скорость света измерялась прямо и косвенно в самых разных условиях. Были проверены также различные следствия постоянства скорости света, и все эти данные подтвердили неизменность скорости света.

Если вам покажется, что это свойство света трудно усвоить, вы можете утешаться тем, что вы не одиноки. В начале XX в. физики потратили немало усилий на то, чтобы опровергнуть его. Они не смогли этого сделать. Эйнштейн, напротив, приветствовал постоянство скорости света, поскольку оно позволяло разрешить противоречие, которое беспокоило его с тех пор, когда он был подростком: независимо от того, с какой скоростью вы движетесь за лучом света, он по--прежнему будет удаляться от вас со скоростью света. Вы не можете сделать воспринимаемую скорость, с которой движется свет, ни на йоту меньше чем 300 000 км/с, не говоря уж о том, чтобы свет казался покоящимся. Вердикт окончательный, обжалованию не подлежит. Но триумфальное разрешение


30 Часть П. Дилемма пространства, времени и квантов

парадокса скорости света было не просто маленькой победой. Эйнштейн понял, что постоянство скорости света означает ниспровержение всей ньютоновской физики.

Истина и ее последствия

Скорость является мерой того, на какое расстояние может переместиться объект в течение заданного промежутка времени. Если мы едем в автомобиле, двигающемся со скоростью 100 км/ч, это означает, конечно, что мы проедем 100 км, если сможем поддерживать эту скорость в течение часа. В такой формулировке скорость выглядит довольно тривиальным понятием, и вы можете удивиться, зачем поднимать столько шума по поводу скорости мячей, снежных лавин и фотонов. Однако, обратим внимание на то, что расстояние представляет собой характеристику пространства; в частности, оно представляет собой меру того, сколько пространства расположено между двумя точками. Заметим также, что длительность представляет собой характеристику времени, а именно, промежутка времени между двумя событиями. Следовательно, скорость связывает понятия пространства и времени. Рассуждая таким образом, мы видим, что любой факт, который бросает вызов обычным представлениям о скорости, например, постоянство скорости света, может привести к пересмотру общих представлений о пространстве и времени. Именно поэтому странный факт, касающийся скорости света, заслуживает тщательного исследования. Внимательное изучение привело Эйнштейна к удивительным выводам.

Влияние на время. Часть I

Используя постоянство скорости света, можно с минимальными усилиями показать, что привычная обыденная концепция времени неверна. Представим себе лидеров двух воюющих держав, сидящих на противоположных концах длинного стола переговоров, которые только что пришли к согласию о прекращении огня, но ни один из них не хочет подписывать это соглашение раньше другого. Генеральный секретарь ООН находит блестящее решение. Ровно посередине между двумя президентами помещается электрическая лампа, которая сначала выключена. Когда лампа включается, свет, который она излучает, достигает каждого из президентов одновременно, поскольку они находятся на одинаковом расстоянии от лампы. Каждый из президентов согласен подписать свою копию договора, когда он (или она) увидит свет. Этот план претворяется в жизнь, и соглашение подписывается к взаимному удовлетворению обеих сторон.

Вдохновленный успехом, Генеральный секретарь использует тот же самый подход к двум другим воющим нациям, которые также достигли мирного соглашения. Единственное различие состоит в том, что эти президенты ведут переговоры, сидя на противоположных концах стола, который находится в вагоне поезда, движущегося с постоянной скоростью. Конкретно, лицо президента Форляндии обращено в сторону движения поезда, а лицо президента Бэкляндии — в обратную сторону. Знакомый с тем, что законы физики остаются неизменными и не зависят от состояния движения до тех пор, пока движение остается равномерным, генеральный секретарь игнорирует это различие и проводит церемонию подписания по сигналу электрической лампы точно так же, как и в предыдущем случае. Оба президента подписывают соглашение и празднуют конец вражды в кругу своих советников.

Как раз в этот момент приходит известие, что между представителями обеих стран, наблюдавших за церемонией с платформы, мимо которой проходил поезд, опять начались столкновения. Пассажиры поезда, в котором проходили переговоры, потрясены, услышав, что причина вновь вспыхнувшей вражды, по словам жителей Форляндии, состоит в том, что их одурачили: их президент подписал договор раньше президента Бэкляндии. Но если все, кто присутствовал в поезде, были единодушны в том, что договор был подписан одновременно, как могло случиться, что наблюдатели, расположенные снаружи, видели это иначе?

Давайте рассмотрим более подробно, как все это выглядело с точки зрения наблюдателя, расположенного на платформе. Сначала


Глава 2. Пространство, время и взгляд наблюдателя 31

лампа в поезде выключена, затем в какой--то момент времени она включается, посылая лучи света в сторону обоих президентов. С точки зрения наблюдателя на платформе президент Форляндии движется навстречу свету, а президент Бэкляндии — удаляется от света. Это значит, что для наблюдателя на платформе свет должен пройти меньший путь, чтобы достичь президента Форляндии, который движется в сторону приближающегося света, чем до президента Бэкляндии, который удаляется от света. Это высказывание не касается скорости света, распространяющегося в сторону двух президентов — мы уже отмечали, что независимо от состояния движения источника и наблюдателя, скорость света всегда остается одной и той же. Мы говорим только о том, какое расстояние, с точки зрения наблюдателя на платформе, должен пройти свет от вспышки лампы, прежде чем он достигнет каждого из президентов. Поскольку для президента Форляндии это расстояние меньше, чем для президента Бэкляндии, а скорость света одна и та же при движении в обоих направлениях, свет достигнет президента Форляндии раньше. Вот почему граждане Форляндии сочли себя обманутыми.

Слушая рассказы свидетелей, которые передает служба новостей CNN, Генеральный секретарь, оба президента и все их советники не могут поверить своим ушам. Они все согласны в том, что лампа была надежно закреплена ровно посередине расстояния между двумя президентами и, следовательно, свет, который излучала лампа, прошел одинаковое расстояние до каждого из президентов. Поскольку скорость света, излученного вправо и влево, одинакова, они считают, и сами наблюдали это, что свет достиг каждого из президентов одновременно.

Кто же прав, те, кто ехал в поезде, или те, кто стоял на платформе? Наблюдения каждой группы и их аргументы безупречны. Правы и те, и другие. Как и в случае с двумя обитателями космического пространства, Джорджем и Грейс, каждая точка зрения одинаково истинна. Только вот эти две истины противоречат друг другу. Между тем на кону важный политический вопрос: действительно ли оба президента подписали соглашение одновременно? Наблюдения и аргументы, изложенные выше, с неизбежностью ведут нас к выводу, что с точки зрения тех, кто находимся в поезде, договор был подписан одновременно, а с точки зрения тех, кто стоял на платформене одновременно. Иными словами, события, которые являются одновременными с точки зрения одних наблюдателей, могут быть неодновременными с точки зрения других, если эти две группы наблюдателей движутся по отношению друг к другу.

Это удивительный вывод. Он представляет собой одно из самых глубоких проникновений в сущность нашего мира, когда-либо сделанных человеком. Если спустя долгое время после того, как вы закончите читать эту книгу, из всей этой главы вы сможете вспомнить только несчастливую попытку разрядки международных отношений, это будет означать, что вы уловили суть открытия Эйнштейна. Это совершенно неожиданное свойство времени было установлено без использования математического аппарата, доступного лишь избранным, без запутанных цепочек логических выводов — только на основе факта постоянства скорости света. Заметьте, что если бы скорость света не была постоянной, а вела себя в соответствии с нашими интуитивными представлениями, основанными на медленном движении мячей и снежков, стоявшие на платформе наблюдатели согласились бы с теми, кто был в поезде. Наблюдатель с платформы продолжал бы считать, что фотоны должны пройти большее расстояние до президента Бэкляндии, чем до президента Форляндии. Однако обычная интуиция подсказывает, что в сторону президента Бэкляндии свет будет двигаться быстрее, получив дополнительный «толчок» от поезда, двигающегося вперед. Аналогичным образом, эти наблюдатели могли полагать, что свет, приближающийся к президенту Бэкляндии, будет двигаться медленнее, поскольку он увлекается назад движением поезда. Если учесть эти (ошибочные) доводы, наблюдатели на платформе увидели бы, что лучи света достигнут каждого президента одновременно. Однако в реальном мире свет не увеличивает и не уменьшает своей скорости, его нельзя


32 Часть II. Дилемма пространства, времени и квантов

подтолкнуть или затормозить. Следовательно, наблюдатели на платформе будут правы, утверждая, что сначала свет дошел до президента Форляндии.



Поделиться:


Последнее изменение этой страницы: 2016-07-14; просмотров: 753; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 44.204.34.64 (0.058 с.)