Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Глава 7. «Супер» в суперструнах

Поиск

Когда в ходе экспедиции Эддингтона 1919 г., организованной для проверки предсказаний Эйнштейна об отклонении света звезд Солнцем, был получен положительный результат, голландский физик Хендрик Лоренц известил об этом Эйнштейна телеграммой. Когда содержание телеграммы, подтверждающей общую теорию относительности, распространилось по всему миру, один студент задал Эйнштейну вопрос, о чем бы он подумал, если бы эксперимент Эддингтона не обнаружил предсказанного отклонения лучей света звезд. Эйнштейн ответил: «Мне было бы жаль Всевышнего, поскольку теория верна» 1). Конечно же, если бы эксперименты действительно не подтвердили предсказаний Эйнштейна, его теория была бы признана неверной, и общая теория относительности не стала бы одним из столпов, на которых покоится современная физика. На самом деле Эйнштейн имел в виду, что общая теория относительности описывает гравитацию с таким изяществом, используя такие простые и в то же время мощные идеи, что он не мог себе представить, как природа могла пройти мимо этой возможности. С точки зрения Эйнштейна общая теория относительности была слишком красивой, чтобы оказаться неверной.

Однако эстетические аргументы не решают научных споров. В конечном счете, истинность физических теорий проверяется тем, насколько успешно они объясняют бесстрастные и упрямые экспериментальные данные. Однако к этому последнему утверждению есть одна очень важная оговорка. Когда теория находится в стадии разработки, ее неполнота часто не позволяет детально установить все ее экспериментальные следствия. Тем не менее, физики должны определить свой выбор и указать направления, в которых будут развиваться исследования такой незавершенной теории. Некоторые из этих решений диктуются внутренней логической непротиворечивостью; мы определенно требуем, чтобы любая разумная теория не содержала логически абсурдных положений. Другие решения обусловлены преимуществами одних теоретических конструкций над другими с точки зрения их следствий для экспериментальных исследований; обычно нас мало интересуют теории, содержимое которых не имеет отношения ни к чему, с чем мы сталкиваемся в окружающем нас мире. Однако, несомненно, бывают случаи, когда решения, принимаемые физиками-теоретиками, основываются на эстетических соображениях, на ощущении того, что красота и элегантность той или иной теории соответствует красоте и элегантности окружающего нас мира. Конечно, нет никаких гарантий, что такие соображения приведут нас к истине. Может быть, глубоко в своей основе структура мироздания менее элегантна, чем та, которую подсказывает наш опыт. Или, возможно, мы обнаружим, что современные эстетические критерии потребуют существенного пересмотра для применения в менее привычных условиях. Тем не менее, всегда и особенно сегодня, когда мы вступаем в эру, где наши теории описывают такие сферы мироздания, которые все труднее поддаются экспериментальному изучению, физики будут рассчитывать на то, что подобные эстетические соображения помогут избежать тупиковых направлений. До настоящего времени такой подход не раз демонстрировал свою мощь и предсказательную силу.

В физике, как и в искусстве, одну из ключевых ролей в эстетических принципах играет симметрия. Однако в отличие от искусства, в физике понятие симметрии имеет очень конкретный и точный смысл. На самом деле, аккуратно облекая это точное по-


116 Часть III. Космическая симфония

нятие симметрии в математическую форму, в течение последних нескольких десятилетий физики смогли разработать теории, в которых частицы вещества и частицы, передающие взаимодействие, переплетены более тесно, чем это считалось возможным когда-либо ранее. Подобные теории, объединяющие не только существующие в природе взаимодействия, но и материальные компоненты, имеют максимально возможную степень симметрии. По этой причине такие теории получили название суперсимметричных. Как мы увидим ниже, теория суперструн является одновременно предтечей и кульминацией суперсимметричных моделей.

Характер физических законов

Вообразим себе Вселенную, в которой законы физики являются такими же недолговечными, как и течения в моде, меняясь от года к году, день ото дня или даже от мгновения к мгновению. Можно утверждать наверняка, что если эти изменения не нарушат основных жизненных процессов, в таком мире вам некогда будет скучать. Простейшие действия превратятся в захватывающие приключения, поскольку случайные изменения законов природы не позволят вам или кому-либо еще использовать прошлый опыт для предсказания будущего.

Такая Вселенная была бы кошмаром для физика. Физики, как и большинство остальных людей, полагаются на стабильность мироздания: законы, которые истинны сегодня, были истинны вчера и останутся истинными завтра (даже если мы не настолько умны, чтобы понимать все эти законы). В конце концов, какой смысл следует вкладывать в слово «закон», если он может меняться столь незакономерно? Сказанное не означает, что Вселенная статична; Вселенная, несомненно, изменяется самым разнообразным образом от одного момента времени к другому. Скорее, это означает, что законы, управляющие подобной эволюцией, постоянны и неизменны. Возникает вопрос: действительно ли мы знаем, что это верно? На самом деле, не знаем. Однако наши успехи в описании многочисленных особенностей устройства мироздания, начиная от первого момента после Большого взрыва и по сегодняшний день, дают уверенность в том, что если законы природы и изменяются, то они должны делать это очень медленно. Простейшее предположение, согласующееся с тем, что нам известно на сегодняшний день, состоит в том, что законы природы неизменны. Теперь представим себе Вселенную, в разных частях которой свои законы физики, и эти законы, как местные обычаи, изменяются непредсказуемым образом от места к месту и отчаянно сопротивляются любому внешнему влиянию. Путешествие в таком мире, подобно приключениям Гулливера, заставит вас столкнуться с огромным разнообразием непредвиденных ситуаций. Однако с точки зрения физика это опять будет кошмаром. Очень трудно, например, примириться с фактом, что законы, которые действуют в одной стране — или даже в одном штате, — могут не действовать в другом. Но попробуйте представить, что произойдет, если таким же образом будут меняться законы природы. В таком мире эксперименты, проведенные в одном месте, не дадут никакой информации о физических законах, действующих в других местах. Физики должны будут снова и снова повторять свои эксперименты в разных местах, чтобы установить характер действующих там физических законов. К счастью, все, что мы знаем на сегодняшний день, говорит о том, что повсеместно действуют одни и те же законы физики. Эксперименты, проводимые по всему миру, могут быть объяснены на основе одних и тех же физических принципов. Более того, наша способность объяснить многочисленные астрофизические наблюдения, относящиеся к самым удаленным уголкам Вселенной, используя один и тот же неизменный набор физических принципов, заставляет нас верить в то, что действительно повсюду правят одни и те же физические законы. Поскольку мы никогда не бывали на противоположном краю Вселенной, мы не можем исключить возможность того, что где-то физика имеет совершенно иной характер, но все известные нам данные заставляют отвергнуть такой вариант.


Глава 7. «Супер» в суперструнах 117

Опять же, сказанное не означает, что Вселенная выглядит одинаково или что детали ее устройства одинаковы в разных местах. Космонавт, скачущий по Луне на «кузнечике» (палке с пружиной), способен проделать массу вещей, которые невозможно себе представить на Земле. Но мы понимаем, что это различие связано с тем, что Луна имеет гораздо меньшую массу, чем Земля; это вовсе не означает, что закон гравитации изменяется от одного места к другому. Ньютоновский или, точнее, эйнштейновский закон гравитации является одинаковым и для Земли, и для Луны. Различия в опыте космонавтов связаны с изменением обстановки, а не с изменением физических законов.

Физики называют эти два свойства физических законов, а именно то, что они не зависят от того, когда или где мы их применяем, симметриями природы. Используя этот термин, физики имеют в виду, что природа трактует каждый момент во времени и каждую точку в пространстве идентично, симметрично, гарантируя, что будут действовать одни и те же фундаментальные законы. Подобно их действию в живописи и в музыке, такие виды симметрии вызывают глубокое удовлетворение: они подчеркивают порядок и согласие в функционировании мироздания. Элегантность, с которой богатые, сложные и разнообразные явления вытекают из простого набора универсальных законов, составляет немалую часть того, что имеют в виду физики, используя слово «прекрасный».

В нашем обсуждении, посвященном специальной и общей теории относительности, мы столкнулись и с другими видами симметрии в природе. Вспомним, что принцип относительности, который лежит в основе специальной теории относительности, гласит, что законы физики будут одинаковы для наблюдателей, движущихся равномерно относительно друг друга. Этот принцип представляет собой разновидность симметрии, поскольку он означает, что природа относится к наблюдателям совершенно одинаково, симметрично. Каждый такой наблюдатель имеет право считать, что он находится в состоянии покоя. Подчеркнем еще раз, что это не означает идентичности картины, которую будут видеть разные наблюдатели; как мы показали ранее, их наблюдения могут существенно расходиться. Дело не в этом. Подобно различиям в ощущениях энтузиастов прыжков на палках с пружиной на Земле и на Луне, различия в наблюдениях отражают особенности обстановки, в которой проводились наблюдения, ведь наблюдатели находились в относительном движении. Но то, что они наблюдали, управлялось одними и теми же законами.

Открыв принцип эквивалентности, основу общей теории относительности, Эйнштейн значительно расширил этот тип симметрии. Он показал, что законы физики в действительности идентичны для всех наблюдателей, даже для тех, которые находятся в состоянии сложного ускоренного движения. Вспомним, что Эйнштейн придал этой идее законченный вид, осознав, что ускоряющийся наблюдатель имеет полное право считать, что он находится в состоянии покоя, утверждая, что сила, действующая на него, обусловлена гравитационным полем. После включения в данную систему гравитации все возможные точки зрения становятся абсолютно равноправными. Помимо несомненной эстетической привлекательности такой равноправной трактовки всех видов движения, эти принципы симметрии, как мы видели выше, играют ключевую роль в поразительных выводах о характере гравитации, к которым пришел Эйнштейн.

Есть ли еще принципы симметрии, имеющие дело с пространством, временем и движением, которым должны удовлетворять законы физики? Если вы основательно поразмыслите об этом, то сможете указать еще один принцип. Законы физики не должны зависеть от того, под каким углом вы проводите свои наблюдения. Например, если вы проводите какой-то эксперимент и после этого решаете повернуть вашу установку и повторить опыт, должны действовать те же самые законы. Этот принцип известен под названием вращательной симметрии, он означает, что законы физики трактуют все возможные направления как равноправные. Данный принцип симметрии имеет такое же значение, как и рассмотренные выше.


118 Часть III. Космическая симфония

Существуют ли какие-либо еще принципы симметрии? Не пропустили ли мы какой-нибудь из них? Вы можете предложить калибровочные симметрии, связанные с негравитационными силами, обсуждавшиеся в главе 5. Да, это несомненные симметрии в природе, но они являются более абстрактными по своему характеру; в данный момент мы хотим сконцентрировать наше внимание на тех видах симметрии, которые имеют непосредственное отношение к пространству, времени или движению. Если добавить это условие, по всей вероятности, вам не удастся предложить чего-либо нового. На самом деле в 1967 г. физики Сидни Коулмен и Джеффри Мандула сумели доказать, что никакие другие виды симметрии, связанные с пространством, временем или движением, не могут сочетаться с принципами симметрии, рассмотренными выше, и приводить к теории, имеющей какое-либо отношение к нашему миру.

Однако впоследствии более тщательное изучение этой теоремы, основанное на догадках ряда физиков, позволило обнаружить одну небольшую лазейку: результат Коулмена—Мандулы не охватывает симметрии, связанные с понятием, известным как спин.

Спин

Элементарные частицы, например электрон, могут вращаться вокруг атомных ядер подобно тому, как Земля вращается вокруг Солнца. Однако может показаться, что в традиционной точечной модели электрона нет аналога вращению Земли вокруг своей оси. Когда объект вращается, точки, расположенные на оси вращения, подобно центральной точке фрисби-диска, остаются неподвижными. Но если какой-нибудь объект является действительно точечным, у него нет «других точек», которые не находились бы на оси вращения. В результате может показаться, что такого понятия, как вращение точечного объекта, попросту не существует. Много лет назад исследование этого вопроса привело к открытию еще одного поразительного квантового эффекта.

В 1925 г. голландские физики Джордж Уленбек и Сэмюэль Гоудсмит осознали, что многие удивительные результаты, относящиеся к свойствам излучаемого и поглощаемого атомами света могут быть объяснены, если предположить, что электроны обладают некоторыми весьма специфичными магнитными свойствами. Примерно за сто лет до этого французский физик Андре-Мари Ампер показал, что магнетизм обязан своим происхождением движению электрических зарядов. Уленбек и Гоудсмит исследовали этот факт и установили, что только один конкретный вид движения электрона может привести к появлению магнитных свойств, на которые указывали экспериментальные данные: это было вращательное движение — спин электрона. Вопреки канонам классической физики, Уленбек и Гоудсмит провозгласили, что электрон, подобно Земле, может кружить по орбите и одновременно вращаться вокруг собственной оси.

Считали ли Уленбек и Гоудсмит, что электрон действительна вращается вокруг своей оси? И да, и нет. На самом деле их работа показала, что существует квантово-механическое понятие спина, которое в определенной степени напоминает вращение объекта вокруг собственной оси, но которое, по сути, представляет квантово-механическое явление. Это одно из тех свойств микромира, которое не имеет аналога в классической физике, а является экспериментально подтверждаемой квантовой особенностью. Представьте себе, например, вращающегося фигуриста. Когда он прижимает руки к телу, его вращение ускоряется, когда разводит руки в стороны — вращение замедляется. Однако рано или поздно, в зависимости от того, с какой энергией он начал свое вращение, его движение замедлится, и он остановится. Не так обстоят дела со спином, открытым Уленбеком и Гоудсмитом. Согласно их работе и данным последующих исследований, каждый электрон во Вселенной всегда вращается с постоянной и никогда не меняющейся скоростью. Спин электрона не является промежуточным состоянием движения, которое мы наблюдаем в случае более привычных объектов, по тем или иным причинам пришедших во вращение. Напро-


Глава 7. «Супер» в суперструнах 119

тив, спин электрона является внутренним, присущим электрону свойством, похожим в этом отношении на массу или электрический заряд. Если бы электрон не вращался, он не был бы электроном.

Хотя первые работы были посвящены электронам, впоследствии физики показали, что понятие спина применимо ко всем частицам вещества, образующим три семейства из табл. 1.1. Это утверждение истинно вплоть до мельчайших деталей: все частицы вещества (а также их античастицы) имеют спин, равный спину электрона. На своем специальном языке физики говорят, что все частицы вещества имеют «спин 1/2», где значение 1/2 представляет собой, грубо говоря, квантово-механическую меру скорости вращения частиц 2). Более того, физики показали, что частицы, передающие негравитационные взаимодействия, — фотоны, слабые калибровочные бозоны и глюоны — также обладают спином, который оказался в два раза больше, чем спин частиц вещества. Все эти частицы имеют «спин 1».

А как насчет гравитации? Еще до появления теории струн физики смогли установить, какой спин должен иметь гипотетический гравитон, чтобы он мог переносить гравитационное взаимодействие. Полученный ими ответ гласил: удвоенный спин фотонов, слабых калибровочных бозонов и глюонов — т. е. «спин 2».

В теории струн спин, так же как масса и константы других взаимодействий, связан с модой колебания струны. Как и в случае с точечными частицами, было бы не совсем правильно думать, что спин, который несет струна, возникает из-за того, что она действительно вращается в пространстве, однако эта картина дает хороший образ для представления. Кстати, теперь можно уточнить одно важное обстоятельство, с которым мы столкнулись ранее. В 1974 г. Шерк и Шварц провозгласили, что теория струн должна рассматриваться как квантовая теория, включающая гравитационное взаимодействие. Такой вывод стал возможен потому, что они обнаружили: в спектре колебаний струн обязательно должна присутствовать мода, которая соответствует безмассовой частице со спином 2. Но именно эти характеристики являются отличительными признаками гравитона. А где гравитон, там и гравитация.

Получив основные представления о спине, вернемся к той роли, которую он играет в качестве упомянутой в предыдущем разделе лазейки в обход теоремы Коулмена— Мандулы, касающейся возможных видов симметрии в природе.



Поделиться:


Последнее изменение этой страницы: 2016-07-14; просмотров: 335; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.22.41.80 (0.009 с.)