Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Использование теории возмущений в теории струнСодержание книги
Поиск на нашем сайте
Физические процессы в теории струн порождаются фундаментальными взаимодействиями между колеблющимися струнами. Как обсуждалось в главе 6*', в эти взаимодействия входят распады и слияния струнных петель, подобные тем, которые изображены на рис. 6.7 и продублированы для удобства читателя на рис. 12.3. Занимающиеся струнами теоретики показали, как схематическому изображению на рис. 12.3 поставить в соответствие точную математическую формулу, описывающую влияние каждой из сталкивающихся струн на движение другой. (Эта формула имеет разный вид в пяти теориях струн, но мы на время будем пренебрегать такими тонкостями.) Если бы не было квантовой теории, на этой формуле и заканчивалось бы изучение взаимодействия струн. Но в силу соотношения неопределенностей возникает микроскопический хаос, в котором происходит непрерывное рождение пар *) Читателям, пропустившим раздел «Более точный ответ» в главе 6, рекомендуется пролистать его начало. 192 Часть IV. Теория струн и структура пространства-времени
струна/антиструна (двух струн с противоположными колебательными модами) за счет одолженной у Вселенной энергии, и быстрая аннигиляция этих пар, в результате которой одолженная энергия возвращается Вселенной. Такие пары струн, рожденные из квантового хаоса, живущие за счет одолженной энергии и, следовательно, обязанные быстро слиться в одну петлю, называют парами виртуальных струн. И хотя их жизнь скоротечна, присутствие этих дополнительных пар виртуальных струн влияет на детальную структуру взаимодействия. Схематически этот процесс изображен на рис. 12.4. Две исходные струны сливаются вместе в точке а, образуя единую петлю. Некоторое время эта петля движется, но в точке б квантовые флуктуации приводят к рождению виртуальной пары струн, которая далее аннигилирует в точке в, и в результате снова получается одна петля. Наконец, в точке г эта струна отдает энергию, распадаясь на пару струн, которые разлетаются в разных направлениях. Из-за наличия одной петли в центре рис. 12.4 физики называют это «однопетлевым» процессом. Как и для взаимодействия, изображенного на рис. 12.3, для этой диаграммы можно выписать точную математическую формулу, в которой учитывается влияние рождения пары виртуальных струн на движение двух исходных. Однако это еще не все: краткосрочные извержения виртуальных струн вследствие квантовых флуктуации могут произойти любое число раз, что приведет к рождению последовательных виртуальных пар. При этом получатся диаграммы с большим количеством петель, как показано на рис. 12.5. Каждая диаграмма дает простой и удобный способ описания соответствующего физического процесса. Налетающие струны сливаются, квантовый хаос вызывает раздвоение получившейся петли на виртуальную пару, струны этой пары движутся, затем аннигилируют с образованием одной петли, которая далее снова распадается на виртуальную пару и т. д. Как и для других диаграмм, для каждого из этих процессов есть математические формулы, в которых учитывается влияние на движение исходной пары струн4). Более того, аналогично примеру с механиком, определившим конечную стоимость ремонта сложением его исходной оценки $900 с последующими поправками $50, $27, $10 и $0,93, и аналогично уточнению описания движения Земли при добавлении к влиянию Солнца меньшего влияния Луны и других планет, теоретики показали, что взаимодействие двух струн можно вычислить путем сложения математических выражений для диаграмм без петель (без пар виртуальных струн), с одной петлей (одной парой виртуальный струн), с двумя петлями (двумя парами виртуальных струн) и т.д., как показано на рис. 12.6. В точном расчете требуется сложить математические выражения для всех этих диа-
Глава 12. Jo рамками струн: в поисках М-теории 193
грамм с растущим числом петель. Но так как диаграмм бесконечно много, а соответствующие математические вычисления с ростом числа петель усложняются, эта задача неразрешима. И здесь занимающиеся струнами теоретики берут на вооружение теорию возмущений, предполагая, что разумная грубая оценка дается процессом без петель, а диаграммы с петлями дают поправки, значения которых уменьшаются по мере увеличения числа петель. В действительности, почти все, что мы знаем о теории струн, включая большую часть сведений из предыдущих глав, было открыто физиками при проведении подробных и тщательных вычислений по теории возмущений. Но чтобы удостовериться в точности полученных результатов, необходимо выяснить, являются ли грубые приближения, в которых учитывается только несколько первых диаграмм рис. 12.6, а все остальные диаграммы опущены, действительно хорошим приближением.
|
||||||||
Последнее изменение этой страницы: 2016-07-14; просмотров: 336; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.219.178.166 (0.006 с.) |